
Questions

class	A():
				def	__init__(self,	x):
								self.x	=	x

				def	bump(self,	i):
								self.x	+=	i

class	B():
				def	__init__(self,	x,	y):
								self.x	=	x
								self.y	=	y

				def	bounce(self,	i):
								if	i	%	2	==	0:
												self.y	+=	i
								self.x	+=	i	*	2

x	=	7
a	=	A(x)
a.bump(2)
b	=	B(a.x,	x)
b.bounce(1)
b.bounce(2)
print(x,	a.x,	b.x,	b.y)

Object mystery

Department course guide: https://d31kydh6n6r5j5.cloudfront.net/uploads/sites/102/2019/08/cscourses1920.pdf

required for the major

The Data Structures course is all about how to store information intelligently and access it efficiently. How can Google take your query, compare it to billions of 
web pages, and return the answer in less than one second? How can one store information so as to balance the competing needs for fast data retrieval and fast 
data modification?

Java

Software development job interviews (including internships) mostly on material from this class

prerequisite for everything

Amy Csizmar Dalal, Anna Rafferty

CS 201: Data Structures (111)

required for the major

What is going on under there? How are positive and negative numbers represented, what actually happens when your code makes a function call, how is memory 
actually controlled

C

prereq for OS in the spring, people typically take 201 first, but not required

Me!

CS 208: Computer Organization and Architecture (111)

In this hands-on studio centered course, we’ll explore and create interactive three dimensional art. Using basic construction techniques, microprocessors, and 
programming, this class brings together computer science, sculpture, engineering, and aesthetic design. Collaborative labs and individual projects will culminate 
in a campus wide exhibition. No prior building experience is required.

not offered very often

David Musicant, Stephen Mohring (from ART)

CS 232: Art, Interactivity, and Robotics (111)

CS 254: Computability and Complexity (111, 202/MATH 236)

Winter CS courses

https://d31kydh6n6r5j5.cloudfront.net/uploads/sites/102/2019/08/cscourses1920.pdf


required for the major

An introduction to the theory of computation. What problems can and cannot be solved efficiently by computers? What problems cannot be solved by 
computers, period?

CS from a theoretical perspective

Josh Davis

required for the major

A course on techniques used in the design and analysis of efficient algorithms. We will cover several major algorithmic design paradigms (greedy algorithms, 
dynamic programming, divide and conquer, and network flow).

CS from a theoretical perspective

David Liben-Nowell

CS 252: Algorithms (201, 202/MATH 236)

required for the major

In this course, we will study techniques, tools, and habits that will improve your chances of writing good software. While working on several medium-sized 
programming projects, we will investigate code construction techniques, debugging and profiling tools, testing methodologies, UML, principles of object-oriented 
design, design patterns, and user interface design.

Amy Csizmar Dalal

CS 257: Software Design (201)

Students will learn the basics of MIDI and Digital Audio programming using C++. In the MIDI portion of the course, you’ll learn to record, play, and transform MIDI 
data. During the Digital Audio portion of the course, you’ll learn the basics of audio synthesis: oscillators, envelopes, filters, amplifiers, and FFT analysis. Weekly 
homework assignments, two quizzes, and two independent projects.

John Ellinger

CS 312: Audio Programming (201)

How can we prove that dynamic cruise control will brake quickly enough if traffic suddenly stops? How must a system coordinate processes to detect 
pedestrians and other vehicles to ensure fair sharing of computing resources? In real-time systems, we explore scheduling questions like these, which require 
provable guarantees of timing constraints for applications including autonomous vehicles. We will consider both theoretical and practical perspectives.

Tanya Amert

CS 330: Introduction to Real-Time Systems (201, 202/MATH 236)

The Internet is composed of a large number of heterogeneous, independently-operating computer networks that work together to transport all sorts of data to 
points all over the world. The fact that it does this so well given its complexity is a minor miracle. In this class, we’ll study the structure of these individual 
networks and of the Internet, and figure out how this “magic” takes place.

Amy Csizmar Dalal

CS 331: Computer Networks (201)

The field of human-computer interaction addresses two fundamental questions: how do people interact with technology, and how can technology enhance the 
human experience? In this course, we will explore technology through the lens of the end user: how can we design effective, aesthetically pleasing technology, 
particularly user interfaces, to satisfy user needs and improve the human condition? How do people react to technology and learn to use technology? What are 
the social, societal, health, and ethical implications of technology?

Sneha Narayan

CS 344: Human-Computer Interaction (201)

the enemies in Space Invaders speed up the fewer of them there are (https://www.youtube.com/watch?v=MU4psw3ccUI)

class	Alien():
				count	=	0

				def	__init__(self):
								Alien.count	+=	1

				def	die(self):
								Alien.count	-=	1

aliens	=	[]
print(Alien.count)
for	i	in	range(11):
				aliens.append(Alien())
print(Alien.count)
aliens[0].die()
print(Alien.count)

static variables

inheritance

Advanced objects

https://www.youtube.com/watch?v=MU4psw3ccUI


class	Person():
				def	__init__(self,	fname,	lname):
								self.firstname	=	fname
								self.lastname	=	lname

				def	fullname(self):
								return	self.firstname	+	"	"	+	self.lastname

class	Student(Person):
				def	__init__(self,	fname,	lname,	year):
								super().__init__(fname,	lname)
								self.graduation_year	=	year

				def	fullname(self):
								return	self.firstname	+	"	"	+	self.lastname	+	",	class	of	"	+	str(self.graduation_year)

Definiing something in terms of itself

def	sum(nums):
				if	len(nums)	==	0:	#	base	case
								return	0
				return	nums[0]	+	sum(nums[1:])	#	recursive	call

recursively summing a list

def	length(xs):
				if	xs	==	[]:	#	base	case
								return	0
				return	1	+	length(xs[1:])	#	recursive	call

recursive count the number of elements in a list

Recursion


