
Questions

homework 7 due 9pm, those with remaining late days can use them

Monday: course evals, AMA, review

writing a function

list indexing

for loops over elements and indexes

while loops

what return does

if, elif, else

and, or

when to use a dictionary or a list

quiz on concepts I want you to have down

quiz reflections and peer evaluation due

Wednesday: greatest hits quiz, wrap up, project work time

By 9pm Friday, each project group sends me two Google
Presentation slides

Saturday, 8:30am, lightning presentations in CMC 102,
project demos

Project code and documentation submitted via Moodle by
5pm Monday, Nov. 25 (hard deadline)

Next week

take a function and apply it to each element of a sequence

map

#	apply	abs	(absolute	value)	to	each	element	of	a	
list
nums	=	xs.copy()	#	xs	is	a	list	of	numbers
for	i	in	range(len(nums)):
				nums[i]	=	abs(nums[i])

becomes nums	=	list(map(abs,	xs))

fp	=	open("district_overall_2018.csv")
fields	=	fp.readline()
lines	=	fp.readlines()
fp.close()

for	i	in	range(len(lines)):
				lines[i]	=	lines[i].strip().split(",")

fp	=	open("district_overall_2018.csv")
fields	=	fp.readline()
lines	=	fp.readlines()
fp.close()

def	process_line(line):
				return	line.strip().split(",")

lines	=	list(map(process_line,	lines))

recall how we processed election data in homework 3

inputs	=	["Meep",	"MORP",	"mergle"]
inputs_lower	=	inputs.copy()
for	i	in	range(len(inputs_lower)):
				inputs_lower[i]	=	inputs_lower[i].lower()

inputs	=	["Meep",	"MORP",	"mergle"]
inputs_lower	=	list(map(str.lower,	inputs))

practice: rewrite this code using map

filter

given a predicate (function that returns True or False) and a
sequence, apply the predicate to each element and generate
a new sequence without elements that return False
#	take	a	list	of	numbers	and	produce	a	new	list	
with	only	the	positive	numbers
nums	=	[]	
for	x	in	xs:	#	xs	is	a	list	of	numbers
				if	x	>	0:
								nums.append(x)

becomes
def	positive(num):
				return	num	>	0	
nums	=	list(filter(positive,	xs))

mn_lines	=	[]
for	line	in	lines:
				if	line[1]	==	"MN":
								mn_lines.append(line)

def	is_mn(line):
				return	line[1]	==	"MN"
mn_lines	=	list(filter(is_mn,	lines))

again going back to homework 3, get the lines for Minnesota

lines	=	[['We',	'are',	'the',	'hollow',	'men'],
	['We',	'are',	'the',	'stuffed',	'men'],
	['Leaning',	'together'],
	['Headpiece',	'filled',	'with',	'straw.',	'Alas!']]

count	=	0
for	line	in	lines:
				for	word	in	line:
								if	len(word)	>	4:

practice: count the number of words with length greater than
4 using filter and map instead of loops

												count	+=	1
print(count)

def	more_than_4(word):
				return	len(word)	>	4
def	count_long_words(line):
				return	len(list(filter(more_than_4,	line)))
print(sum(map(count_long_words,	lines))

a function without a name we define just-in-time

anonymous function

lines	=	list(map(lambda	line:	
line.strip().split(","),	lines))

nums	=	list(filter(lambda	x:	x	>	0,	xs))

mn_lines	=	list(filter(lambda	line:	line[1]	==	"MN",	lines))

practice: redo mn_lines example using a lambda

print(sum(map(lambda	line:	len(list(filter(lambda	
word:	word	>	4))),	lines)))

lambda

a single expression that generates a new sequence from an
existing sequence

instead of nums	=	list(map(abs,	nums))
nums	=	[abs(num)	for	num	in	nums]

can extend with filtering

[<resulting item> <start of a for loop> if <boolean expression>]

basically, [<resulting item> <start of a for loop>]

list comprehension

some are missing (""), some malfunctioned ("999")

have list of temperature readings as strings

temps	=	[float(t)	for	t	in	temps	if	len(t)	>	0	
and	t	!=	"999"]

votes	=	[int(line[14])	for	line	in	lines	if	line[1]	==	"MN"	and	
line[7]	==	"District	2"	and	line[12]	!=	"TRUE"]

get vote totals for MN district 2

