13.3. Sorting Algorithms

477

the recursive version is terribly inefficient. In that case, avoid it, unless of course
you can’t come up with an iterative algorithm. As you’ll see later in the chapter,
sometimes there just isn’t a good solution.

13.3| Sorting Algorithms

The sorting problem provides a nice test bed for the algorithm design techniques
we have been discussing. Remember, the basic sorting problem is to take a list
and rearrange it so that the values are in increasing (actually, nondecreasing)
order.

13.3.1| Naive Sorting: Selection Sort

Let’s start with a simple “be the computer” approach to sorting. Suppose you
have a stack of index cards, each with a number on it. The stack has been shuf-
fled, and you need to put the cards back in order. How would you accomplish
this task?

There are any number of good systematic approaches. One simple method
is to look through the deck to find the smallest value and then place that value
at the front of the stack (or perhaps in a separate stack). Then you could go
through and find the smallest of the remaining cards and put it next in line, etc.
Of course, this means that you’ll also need an algorithm for finding the smallest
remaining value. You can use the same approach we used for finding the max of
a list (see Chapter 7). As you go through, you keep track of the smallest value
seen so far, updating that value whenever you find a smaller one.

The algorithm I just described is called selection sort. Basically, the algorithm
consists of a loop and each time through the loop, we select the smallest of
the remaining elements and move it into its proper position. Applying this idea
to a list of n elements, we proceed by finding the smallest value in the list
and putting it into the 0** position. Then we find the smallest remaining value
(from positions 1-(n-1)) and put it in position 1. Next, the smallest value from
positions 2—(n-1) goes into position 2, etc. When we get to the end of the list,
everything will be in its proper place.

There is one subtlety in implementing this algorithm. When we place a value
into its proper position, we need to make sure that we do not accidentally lose
the value that was originally stored in that position. For example, if the smallest
item is in position 10, moving it into position O involves an assignment:

nums [0] = nums[10]

478 Chapter 13. Algorithm Design and Recursion

But this wipes out the value currently in nums [0]; it really needs to be moved
to another location in the list. A simple way to save the value is to swap it with
the one that we are moving. Using simultaneous assignment, the statement

nums [10] , nums[0]

nums [0], nums[10]

places the value from position 10 at the front of the list, but preserves the origi-
nal first value by stashing it into location 10.

Using this idea, it is a simple matter to write a selection sort in Python. I
will use a variable called bottom to keep track of which position in the list we
are currently filling, and the variable mp will be used to track the location of the
smallest remaining value. The comments in this code explain this implementa-
tion of selection sort:

def selSort(nums):
sort nums into ascending order

n = len(nums)

For each position in the list (except the very last)
for bottom in range(n-1):
find the smallest item in nums[bottom]..nums[n-1]

mp = bottom # bottom is smallest initially
for i in range(bottom+1,n): # look at each position
if nums[i] < nums[mp]: # this one is smaller
mp = i # remember its index

swap smallest item to the bottom
nums [bottom] , nums[mp] = nums[mp], nums[bottom]

One thing to notice about this algorithm is the accumulator for finding the min-
imum value. Rather than actually storing the minimum seen so far, mp just
remembers the position of the minimum. A new value is tested by comparing
the item in position i to the item in position mp. You should also notice that
bottom stops at the second-to-last item in the list. Once all of the items up to
the last have been put in the proper place, the last item has to be the largest, so
there is no need to bother looking at it.

The selection sort algorithm is easy to write and works well for moderately
sized lists, but it is not a very efficient sorting algorithm. We’ll come back and
analyze it after we’ve developed another algorithm.

13.3. Sorting Algorithms

479

13.3.2| Divide and Conquer: Merge Sort

As discussed above, one technique that often works for developing efficient algo-
rithms is the divide-and-conquer approach. Suppose a friend and I were working
together trying to put our deck of cards in order. We could divide the problem
up by splitting the deck of cards in half with one of us sorting each of the halves.
Then we just need to figure out a way of combining the two sorted stacks.

The process of combining two sorted lists into a single sorted result is called
merging. The basic outline of our divide-and-conquer algorithm, called merge
sort, looks like this:

Algorithm: merge sort nums

split nums into two halves

sort the first half

sort the second half

merge the two sorted halves back into nums

The first step in the algorithm is simple; we can just use list slicing to handle
that. The last step is to merge the lists together. If you think about it, merging
is pretty simple. Let’s go back to our card stack example to flesh out the details.
Since our two stacks are sorted, each has its smallest value on top. Whichever
of the top values is the smallest will be the first item in the merged list. Once
the smaller value is removed, we can look at the tops of the stacks again, and
whichever top card is smaller will be the next item in the list. We just continue
this process of placing the smaller of the two top values into the big list until
one of the stacks runs out. At that point, we finish out the list with the cards
from the remaining stack.

Here is a Python implementation of the merge process. In this code, 1st1
and 1st2 are the smaller lists, and 1st3 is the larger list where the results are
placed. In order for the merging process to work, the length of 1st3 must be
equal to the sum of the lengths of 1st1 and 1st2. You should be able to follow
this code by studying the accompanying comments:

def merge(lstl, 1st2, 1st3):
merge sorted lists 1lstl and 1st2 into 1st3

these indexes keep track of current position in each list
i1, i2, i3 =0, 0, O # all start at the front

480 Chapter 13. Algorithm Design and Recursion

nl, n2 = len(1lstl), len(1lst2)

Loop while both 1lstl and 1st2 have more items
while il < nl1 and i2 < n2:
if 1st1[il1] < 1st2[i2]: # top of 1stl is smaller
1st3[i3] = 1st1[il] # copy it into current spot in 1st3

i1 =i1 + 1

else: # top of 1st2 is smaller
1st3[i3] = 1st2[i2] # copy it into current spot in 1st3
i2 =432 + 1

i3 =1i3 + 1 # item added to 1st3, update position

Here either 1stl or 1st2 is done. One of the following loops will
execute to finish up the merge.

Copy remaining items (if any) from lstil
while il < nl:

1st3[i3] = 1st1[il]

i1 i1 + 1

i3 i3 +1
Copy remaining items (if any) from 1lst2
while i2 < n2:

1st3[i3] = 1st2[i2]

i2 =1i2 + 1

i3 =i3 + 1

OK, now we can slice a list into two, and if those lists are sorted, we know
how to merge them back into a single list. But how are we going to sort the
smaller lists? Well, let’s think about it. We are trying to sort a list, and our
algorithm requires us to sort two smaller lists. This sounds like a perfect place
to use recursion. Maybe we can use mergeSort itself to sort the two lists. Let’s
go back to our recursion guidelines to develop a proper recursive algorithm.

In order for recursion to work, we need to find at least one base case that
does not require a recursive call, and we also have to make sure that recursive
calls are always made on smaller versions of the original problem. The recursion
in our mergeSort will always occur on a list that is about half as large as the
original, so the latter property is automatically met. Eventually, our lists will be
very small, containing only a single item or not items at all. Fortunately, these
lists are already sorted! Voila, we have a base case. When the length of the list
is less than two, we do nothing, leaving the list unchanged.

13.3. Sorting Algorithms 481

Given our analysis, we can update the merge sort algorithm to make it prop-
erly recursive:

if len(nums) > 1:
split nums into two halves
mergeSort the first half
mergeSort the second half
merge the two sorted halves back into nums

Then we can translate this algorithm directly into Python code:

def mergeSort(nums) :
Put items of nums in ascending order
n = len(nums)
Do nothing if nums contains O or 1 items
if n > 1:
split into two sublists
m=n//2
numsl, nums2 = nums[:m], nums[m:]
recursively sort each piece
mergeSort (nums1)
mergeSort (nums2)
merge the sorted pieces back into original list
merge (nums1, nums2, nums)

You might try tracing this algorithm with a small list (say eight elements), just
to convince yourself that it really works. In general, though, tracing through
recursive algorithms can be tedious and often not very enlightening.

Recursion is closely related to mathematical induction, and it requires prac-
tice before it becomes comfortable. As long as you follow the rules and make
sure that every recursive chain of calls eventually reaches a base case, your al-
gorithms will work. You just have to trust and let go of the grungy details. Let
Python worry about that for you!

13.3.3| Comparing Sorts

Now that we have developed two sorting algorithms, which one should we use?
Before we actually try them out, let’s do some analysis. As in the searching
problem, the difficulty of sorting a list depends on the size of the list. We need to

482

Chapter 13. Algorithm Design and Recursion

figure out how many steps each of our sorting algorithms requires as a function
of the size of the list to be sorted.

Take a look back at the algorithm for selection sort. Remember, this algo-
rithm works by first finding the smallest item, then finding the smallest of the
remaining items, and so on. Suppose we start with a list of size n. In order to
find the smallest value, the algorithm has to inspect each of the n items. The
next time around the outer loop, it has to find the smallest of the remaining
n — 1 items. The third time around, there are n — 2 items of interest. This pro-
cess continues until there is only one item left to place. Thus, the total number
of iterations of the inner loop for the selection sort can be computed as the sum
of a decreasing sequence.

n+(n—1)+mn—-2)+n—3)+...+1

In other words, the time required by selection sort to sort a list of n items is
proportional to the sum of the first n whole numbers. There is a well-known
formula for this sum, but even if you do not know the formula, it is easy to
derive. If you add the first and last numbers in the series you get n + 1. Adding
the second and second-to-last values gives (n — 1) + 2 = n + 1. If you keep
pairing up the values working from the outside in, all of the pairs add to n + 1.
Since there are n numbers, there must be & pairs. That means the sum of all the
pairs is %

You can see that the final formula contains an n? term. That means that the
number of steps in the algorithm is proportional to the square of the size of the
list. If the size of the list doubles, the number of steps quadruples. If the size
triples, it will take nine times as long to finish. Computer scientists call this a
quadratic or n? algorithm.

Let’s see how that compares to the merge sort algorithm. In the case of
merge sort, we divided a list into two pieces and sorted the individual pieces
before merging them together. The real work is done during the merge process
when the values in the sublists are copied back into the original list.

Figure 13.3 depicts the merging process to sort the list [3, 1, 4, 1, 5, 9,
2, 6]. The dashed lines show how the original list is continually halved until
each item is its own list with the values shown at the bottom. The single-item
lists are then merged back up into the two-item lists to produce the values shown
in the second level. The merging process continues up the diagram to produce
the final sorted version of the list shown at the top.

The diagram makes analysis of the merge sort easy. Starting at the bottom
level, we have to copy the n values into the second level. From the second to

13.3. Sorting Algorithms

483

s’ RS N
// // \\ \\
1 1 3 4 2 5 6 9
p VAEEEN N 4 7 N\ AN
1 3 1 4 5 9 2 6
/

/7 \ \ / /7 \ \ / /7 \ \ / \ \

3 1 4 1 5 9 2 6

Figure 13.3: Merges required to sort [3, 1,4, 1,5, 9, 2, 6]

third level, the n values need to be copied again. Each level of merging involves
copying n values. The only question left to answer is how many levels are there?
This boils down to how many times a list of size n can be split in half. You already
know from the analysis of binary search that this is just logy n. Therefore, the
total work required to sort n items is n logs n. Computer scientists call this an n
log n algorithm.

So which is going to be better, the n? selection sort or the n log n merge sort?
If the input size is small, the selection sort might be a little faster because the
code is simpler and there is less overhead. What happens, though, as n gets
larger? We saw in the analysis of binary search that the log function grows very
slowly (logs 16,000,000 = 24) so n(logyn) will grow much more slowly than

Empirical testing of these two algorithms confirms this analysis. On my com-
puter, selection sort beats merge sort on lists up to size about 50, which takes
around 0.008 seconds. On larger lists, the merge sort dominates. Figure 13.4
shows a comparison of the time required to sort lists up to size 3000. You can
see that the curve for selection sort veers rapidly upward (forming half of a
parabola), while the merge sort curve looks almost straight (look at the bot-
tom). For 3000 items, selection sort requires over 30 seconds while merge sort
completes the task in about % of a second. Merge sort can sort a list of 20,000
items in less than six seconds; selection sort takes around 20 minutes. That’s
quite a difference!

484

Chapter 13. Algorithm Design and Recursion
35 T T T T T
'selSort’ ——
30 + 'mergeSort’ - emnen
25 i
@ 20 t l
c
9
2 15 t |
10 J
5t i
0 * Meoooomooooooooo * - E X -3
500 1000 1500 2000 2500 3000
List Size

Figure 13.4: Experimental comparison of selection sort and merge sort

13.4| Hard Problems

Using our divide-and-conquer approach, we were able to design good algorithms
for the searching and sorting problems. Divide and conquer and recursion are
very powerful techniques for algorithm design. However, not all problems have
efficient solutions.

Tower of Hanoi

One very elegant application of recursive problem solving is the solution to a
mathematical puzzle usually called the Tower of Hanoi or Tower of Brahma.
This puzzle is generally attributed to the French mathematician Edouard Lucas,
who published an article about it in 1883. The legend surrounding the puzzle
goes something like this:

Somewhere in a remote region of the world is a monastery of a very devout

