
CS 111 Session 13: Sorting (mostly) EM, November 15, 2019

1. What is big-O complexity? Why is it a useful measure?

2. What is the big-O complexisty of the following procedure?
Look at each element in a list of length n and return the biggest

3. On the ith step of insertion sort, what can we say about the front of the list?

4. In one or two sentences, describe the difference between insertion and selection sort.

5. Consider the following method. What is returned by the call test(15, 4)?

def test(a, b):

if (a < b):

return 0

else

return 1 + test(a-b, b)

6. Trace the execution on insertion sort on the following list:

[20, 25, 15, 9, -8, 12, -10, 5]

7. Trace the execution on selection sort on the following list:

["grape", "apple", "orange", "banana", "seaweed", "milk"]

1



8. Trace the execution on merge sort on the following list:

[12, 0, -5, 16, -20, 57, 19, 3]

9. Assume the merge method is written:

def merge(left, right):

left_point = 0

right_point = 0

merged = []

while left_point < len(left) and right_point < len(right):

if left[left_point] < right[right_point]:

merged.append(left[left_point])

left_point +=1

else:

merged.append(right[right_point])

right_point +=1

if left_point >= len(left):

merged = merged + right[right_pointer:]

else

merged = merged + left[left_pointer:]

return merged

Now, try to write the recursive method mergeSort that takes in a list and returns the list in sorted
order. We did this in class, so try to do it without your notes first, then check to see how you did.

2


