
CSE 373 Autumn 2020LEC 04: Asymptotic Analysis

CS 201 w21

Time and Space
Complexity

Learning Objectives

1. Describe the difference between Code Modeling and Asymptotic
Analysis (both components of Algorithmic Analysis)

2. Model a (simple) piece of code with a function describing its
runtime

3. Explain why we can throw away constants when we compute Big-O
bounds.

- From a practical perspective and from the “definition” perspective.

After this video and practice problems, you should be able to...

Lecture Outline

• Overview: Algorithmic Analysis

• Code Modeling

• Asymptotic Analysis

• Big-O Definition

Time and space analysis helps us differentiate
between data structures

• “Just change first node” vs. “Change every element” is clearly different

• To evaluate data structures, need to understand impact of design
decisions

ArrayList
• Zero “overhead” per element

(internal array just stores the data)
• But extra capacity is “wasted”

Linked List
• One or two extra references per

element (next and previous in
each node)

• But exactly as many nodes as
elements (no extra capacity)

If ArrayList is managed precisely will
be more space efficient, but both
structures take linear space

We need a tool to analyze code that is

Simple
We don’t care about tiny differences in
implementation, want the big picture result

A

Mathematically Rigorous
Use mathematical functions as a precise,
flexible basis

B

Decisive
Produce a clear comparison indicating
which code takes “longer”

C

Overview: Algorithmic Analysis

• Algorithmic Analysis: The overall process of characterizing code with a
complexity class, consisting of:

- Code Modeling: Code Function describing code’s runtime

- Asymptotic Analysis: Function Complexity class describing asymptotic behavior

Code Modeling

1

Asymptotic Analysis

2

CODE

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

COMPLEXITY

CLASS

O(n)

©
RUNTIME

FUNCTION

f(n) = 2n

What is a Complexity Class

• Complexity Class: a category of algorithm efficiency based on the
algorithm’s relationship to the input size N

Complexity
Class

Big-O Runtime if you
double N

constant O(1) unchanged

logarithmic O(log2 N) increases slightly

linear O(N) doubles

log-linear O(N log2 N) slightly more than
doubles

quadratic O(N2) quadruples

...

exponential O(2N) multiplies drastically

Does Complexity Really Matter?

Yes! The following table presents several hypothetical algorithm runtimes as an input size N grows,
assuming that each algorithm required 100ms to process 100 elements. Notice that even if they all
start at the same runtime for a small input size, the ones in higher complexity classes become so
slow as to be impractical.

Lecture Outline

• Overview: Algorithmic Analysis

• Code Modeling

• Asymptotic Analysis

• Big-O Definition

Code Modeling

• Code Modeling – the process of mathematically representing how
many operations a piece of code will perform in relation to the input
size n.

- Convert from code to a function representing its runtime

CODE Code Modeling
RUNTIME

FUNCTION

1

What is an operation?
• We don’t know exact time every operation takes, but for now let’s try

simplifying assumption: all basic operations take the same time

• Basics:
- +, -, /, *, %, ==

- Assignment

- Returning

- Variable/array access

• Function Calls
- Total time from the operations in the code

for that function

• Conditionals
- Test + time for the followed branch

• Loops
- Number of iterations * total time for the

condition and code inside the loop

Code Modeling Example I

public void method1(int n) {
int sum = 0;
int i = 0;
while (i < n) {

sum = sum + (i * 3);
i = i + 1;

}
return sum;

}

+1

+1

+1

+3

+2

+1

+6 *n

Loop runs n times

f(n) = 6n + 3

Code Modeling Example II
public void method2(int n) {

int sum = 0;
int i = 0;
while (i < n) {

int j = 0;
while (j < n) {

if (j % 2 == 0) {
// do nothing

}
sum = sum + (i * 3) + j;
j = j + 1;

}
i = i + 1;

} return sum;
}

+1

+1

+1

+2

+1

+9 *n

This inner loop
runs n times

f(n) = (9n+4)n + 3

+1

+1

+2

+2

+4

9n + 4 *n

This outer loop
runs n times

Lecture Outline

• Overview: Algorithmic Analysis

• Code Modeling

• Asymptotic Analysis

• Big-O Definition

Where are we?

• We just turned a piece of code into a function!

• Now to focus on step 2, asymptotic analysis

COMPLEXITY

CLASS
CODE Code Modeling

RUNTIME

FUNCTION Asymptotic Analysis

1 2

for (i = 0; i < n; i++) {
a[i] = 1;
b[i] = 2;

}

O(n)f(n) = 2n

Finding a Big-O

• We have an expression for 𝑓(𝑛). How do
we get the 𝑂() that we’ve been talking
about?

1. Find the “dominating term” and delete all
others.

- The “dominating” term is the one that is largest
as 𝑛 gets bigger. In this class, often the largest
power of 𝑛.

2. Remove any constant factors.

= 9n2 + 4n + 3

≈ 9n2

≈ n2

f(n) is O(n2)

f(n) = (9n+4)n + 3

COMPLEXITY

CLASS
RUNTIME

FUNCTION Asymptotic Analysis

2

Is it okay to throw away all that info?

• Asymptotic Analysis: Analysis of function behavior as its input
approaches infinity

- We only care about what happens when n approaches infinity

- For small inputs, doesn’t really matter: all code is “fast enough”

- Since we’re dealing with infinity, constants and lower-order terms don’t
meaningfully add to the final result. The highest-order term is what drives
growth!

Simple
We don’t care about tiny differences in
implementation, want the big picture result

Decisive
Produce a clear comparison indicating
which code takes “longer”

A C

Remember our goals:

No seriously, this is really okay?

• There are tiny variations in these functions
(2n vs. 3n vs. 3n+1)
• But at infinity, will be clearly grouped

together
• We care about which group a function

belongs in

• Let’s convince ourselves this is the right
thing to do:
• https://www.desmos.com/calculator/t9

qvn56yyb

https://www.desmos.com/calculator/t9qvn56yyb

Lecture Outline

• Overview: Algorithmic Analysis

• Code Modeling

• Asymptotic Analysis

• Big-O Definition

Using Formal Definitions

• If analyzing simple or familiar functions, don’t bother with the formal
definition. You can be comfortable using your intuition!

• If you take more CS classes (202, 252, 254) the formal definition will be
important, so I wanted to mention it here

B
Mathematically Rigorous
Use mathematical functions as a precise,
flexible basis

Big-O Definition

• We wanted to find an upper bound on our algorithm’s
running time, but

- We only care about what happens as 𝑛 gets large.

- We don’t want to care about constant factors.

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,
𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Intuition: 𝑔 𝑛 “eventually dominates” 𝑓(𝑛)

Why 𝑛0?

Why 𝑐?

f1(n)=0.01n2

f2(n)=n

𝑇 𝑛

𝑛

f(n)=5n

g(n)=n

