7.3 Example: Playing Cards

155

}
} while (£*f <= n);
set(n) ;
return n;

}

Clearly, the reset method is responsible for restarting the sequence at 2. While
it would be possible for each Generator to keep track of its current value in its
own manner, placing that general code in the AbstractGenerator reduces the
overall cost of keeping track of this information for each of the many implemen-
tations.

Exercise 7.1 Implement a Generator that provides a stream of random integers.
After a call to reset, the random sequence is “rewound” to return the same se-
quence again. Different generators should probably generate different sequences.
(Hint: You may find it useful to use the setSeed method of java.util.Random.)

7.3 Example: Playing Cards

Many games involve the use of playing cards. Not all decks of cards are the
same. For example, a deck of bridge cards has four suits with thirteen cards in
each suit. There are no jokers. Poker has a similar deck of cards, but various
games include special joker or wild cards. A pinochle deck has 48 cards con-
sisting of two copies of 9, jack, queen, king, 10, and ace in each of four suits.
The ranking of cards places 10 between king and ace. A baccarat deck is as in
bridge, except that face cards are worth nothing. Cribbage uses a standard deck
of cards, with aces low.

While there are many differences among these card decks, there are some
common features. In each, cards have a suit and a face (e.g., ace, king, 5). Most
decks assign a value or rank to each of the cards. In many games it is desirable
to be able to compare the relative values of two cards. With these features in
mind, we can develop the following Card interface:

public interface Card

{
public static final int ACE = 1;
public static final int JACK = 11;
public static final int QUEEN = 12;
public static final int KING = 13;
public static final int JOKER = 14;
public static final int CLUBS = 0;
public static final int DIAMONDS =
public static final int HEARTS = 2
public static final int SPADES = 3
public int suit();

1;

s
>




156

A Design Method

AbstractCard

}

// post: returns the suit of the card

public int face();
// post: returns the face of the card, e.g., ACE, 3, JACK

public boolean isWild();
// post: returns true iff this card is a wild card

public int value();
// post: return the point value of the card

public int compareTo(Object other);
// pre: other is valid Card
// post: returns int <,==,> 0 if this card is <,==,> other

public String toString();
// post: returns a printable version of this card

The card interface provides all the public methods that we need to have in our
card games, but it does not provide any hints at how the cards are implemented.
The interface also provides standard names for faces and suits that are passed
to and returned from the various card methods.

In the expectation that most card implementations are similar to a stan-
dard deck of cards, we provide an AbstractCard class that keeps track of an
integer—a card index—that may be changed with set or retrieved with get
(both are protected methods):

import java.util.Random;
public abstract class AbstractCard implements Card

{

protected int cardIndex;
protected static Random gen = new Random();

public AbstractCard()
// post: constructs a random card in a standard deck
{

set (randomIndex(52)) ;

protected static int randomIndex(int max)

// pre: max > 0

// post: returns a random number n, 0 <= n < max
{

return Math.abs(gen.nextInt()) % max;

protected void set(int index)
// post: this card has cardIndex index

{



7.3 Example: Playing Cards 157

cardIndex = index;

protected int get()
// post: returns this card’s card index
{

return cardIndex;

public int suit()
// post: returns the suit of the card
{

return cardIndex / 13;

public int face()
// post: returns the face of the card, e.g. ACE, 3, JACK
{

return (cardIndex % 13)+1;

public boolean isWild()

// post: returns true iff this card is a wild card
// (default is false)

{

return false;

public int value()
// post: return the point value of the card, Ace..King
{

return face();

public String toString()
// post: returns a printable version of this card
{

String cardName = "";

switch (face())

{
case ACE: cardName = "Ace"; break;
case JACK: cardName = "Jack'"; break;
case QUEEN: cardName = "Queen"; break;

case KING: cardName = "King'"; break;
default: cardName = cardName + face(); break;
}
switch (suit())
{
case HEARTS: cardName += " of Hearts'"; break;
case DIAMONDS: cardName += " of Diamonds"; break;



158

A Design Method

PokerCard

case CLUBS: cardName += " of Clubs"; break;
case SPADES: cardName += " of Spades"; break;
}

return cardName;

}

Our abstract base class also provides a protected random number generator that
returns values from O to max-1. We make use of this in the default constructor
for a standard deck; it picks a random card from the usual 52. The cards are
indexed from the ace of clubs through the king of spades. Thus, the face and
suit methods must use division and modulo operators to split the card index
into the two constituent parts. By default, the value method returns the face of
the card as its value. This is likely to be different for different implementations
of cards, as the face values of cards in different games vary considerably.

We also provide a standard toString method that allows us to easily print
out a card. We do not provide a compareTo method because there are complex-
ities with comparing cards that cannot be predicted at this stage. For example,
in bridge, suits play a predominant role in comparing cards. In baccarat they do
not.

Since a poker deck is very similar to our standard implementation, we find
the PokerCard implementation is very short. All that is important is that we
allow aces to have high values:

public class PokerCard extends AbstractCard
{
public PokerCard(int face, int suit)
// pre: face and suit have valid values
// post: constructs a card with the particular face value
{

set (suit*13+face-1);

public PokerCard()
// post: construct a random poker card.
{
// by default, calls the AbstractCard constructor

public int value()
// post: returns rank of card - aces are high
{

if (face() == ACE) return KING+1;

else return face();

public int compareTo(Object other)
// pre: other is valid PokerCard
// post: returns relationship between this card and other



7.3 Example: Playing Cards

159

PokerCard that = (PokerCard)other;
return value()-that.value();

}

Exercise 7.2 Write the value and compareTo methods for a pair of cards where
suits play an important role. Aces are high, and assume that suits are ranked clubs
(low), diamonds, hearts, and spades (high). Assume that face values are only
considered if the suits are the same; otherwise ranking of cards depends on their
suits alone.

The implementation of a pinochle card is particularly difficult. We are inter-
ested in providing the standard interface for a pinochle card, but we are faced
with the fact that there are two copies each of the six cards 9, jack, queen, king,
10, and ace, in each of the four suits. Furthermore we assume that 10 has the
unusual ranking between king and ace. Here’s one approach:

public class PinochleCard extends AbstractCard
{
// cardIndex face suit
// 0 9 clubs
// 1 9 clubs (duplicate)
/...
// 10 ACE clubs
// 11 ACE clubs (duplicate)
// 12 9 diamonds
// 13 9 diamonds (duplicate)
/...
// 47 ACE spades (duplicate)

public PinochleCard(int face, int suit, int copy)
// pre: face and suit have valid values
// post: constructs a card with the particular face value
{
if (face == ACE) face = KING+1;
set ((suit*2+copy)*6+face-9);

public PinochleCard()
// post: construct a random Pinochle card.
{

set (randomIndex (48)) ;

public int face()
// post: returns the face value of the card (9 thru Ace)
{

int result = get()%6 + 9;

if (result == 14) result = ACE;

PinochleCard



160 A Design Method

return result;

public int suit()
// post: returns the suit of the card (there are duplicates!)

{
// this is tricky; we divide by 12 cards (including duplicates)
// per suit, and again by 2 to remove the duplicate
return cardIndex / 12 / 2;

}

public int value()
// post: returns rank of card - aces are high

{
if (face() == ACE) return KING+2;
else if (face() == 10) return KING+1;
else return face();

}

public int compareTo(Object other)
// pre: other is valid PinochleCard
// post: returns relationship between this card and other

{
PinochleCard that = (PinochleCard)other;
return value()-that.value();

}

The difficulty is that there is more than one copy of a card. We choose to keep
track of the extra copy, in case we need to distinguish between them at some
point, but we treat duplicates the same in determining face value, suit, and
relative rankings.

7.4 Conclusions

Throughout the remainder of this book we will find it useful to approach each
type of data structure first in an abstract manner, and then provide the details of
various implementations. While each implementation tends to have a distinct
approach to supporting the abstract structure, many features are common to all
implementations. The basic interface, for example, is a shared concept of the
methods that are used to access the data structure. Other features—including
common private methods and shared utility methods—are provided in a basic
implementation called the abstract base class. This incomplete class serves as
a single point of extension for many implementations; the public and private
features of the abstract base class are shared (and possibly overridden) by the
varied approaches to solving the problem.



