
CS 201: Data Structures

Hashing I

Aaron Bauer

Winter 2021

Motivating Hash Tables

For a Map with n key, value pairs

put contains remove

• Unsorted linked-list O(n) O(n) O(n)

• Unsorted array O(n) O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

• Balanced tree O(log n) O(log n) O(log n)

• Magic array O(1) O(1) O(1)

Sufficient “magic”:

– Remove the requirement that elements are ordered [easy]

– Use key to compute array index for an item in O(1) time [doable]

– Have a different index for every item [magic]

Hash Tables: Turn Key Into Array Index

• Aim for constant time put, get, contains, and remove

– “On average” under some often-reasonable assumptions

• A hash table is an array of some fixed size

• Basic idea:
0

…

TableSize –1

hash function:

index = h(key)

hash table

All possible keys

(e.g., integers, strings)

Hash Tables: More Keys Than Spots

• There are m possible keys (m typically large, even infinite)

• We expect our table to have only n items

• n is much less than m (often written n << m)

Many maps have this property

– Compiler: All possible identifiers allowed by the language vs.

those used in some file of one program

– Database: All possible volunteer names vs. volunteers

signed up with Bauer for MN

– AI: All possible chess-board configurations vs. those

considered by the current player

– …

Hash functions

An ideal hash function:

• Fast to compute

• “Rarely” hashes two “used” keys to the same index

– Often impossible in theory but easy in practice

– Will handle collisions in next lesson
0

…

TableSize –1

hash function:

index = h(key)

hash table

All possible keys

(e.g., integers, strings)

Hashing integers

• key space = integers

• Simple hash function:

h(key) = key % TableSize

– Fairly fast and natural

• Example:

– TableSize = 10

– Insert 7, 18, 41, 34, 10

– (ignoring the values of these key-

value pairs—we’ll think of these as

data “along for the ride”)

0

1

2

3

4

5

6

7

8

9

Hashing integers

0

1

2

3

4

5

6

7 7

8

9

• key space = integers

• Simple hash function:

h(key) = key % TableSize

– Fairly fast and natural

• Example:

– TableSize = 10

– Insert 7, 18, 41, 34, 10

– (As usual, ignoring data “along for

the ride”)

Hashing integers

0

1

2

3

4

5

6

7 7

8 18

9

• key space = integers

• Simple hash function:

h(key) = key % TableSize

– Fairly fast and natural

• Example:

– TableSize = 10

– Insert 7, 18, 41, 34, 10

– (As usual, ignoring data “along for

the ride”)

Hashing integers

0

1 41

2

3

4

5

6

7 7

8 18

9

• key space = integers

• Simple hash function:

h(key) = key % TableSize

– Fairly fast and natural

• Example:

– TableSize = 10

– Insert 7, 18, 41, 34, 10

– (As usual, ignoring data “along for

the ride”)

Hashing integers

0

1 41

2

3

4 34

5

6

7 7

8 18

9

• key space = integers

• Simple hash function:

h(key) = key % TableSize

– Fairly fast and natural

• Example:

– TableSize = 10

– Insert 7, 18, 41, 34, 10

– (As usual, ignoring data “along for

the ride”)

Hashing integers

0 10

1 41

2

3

4 34

5

6

7 7

8 18

9

• key space = integers

• Simple hash function:

h(key) = key % TableSize

– Fairly fast and natural

• Example:

– TableSize = 10

– Insert 7, 18, 41, 34, 10

– (As usual, ignoring data “along for

the ride”)

Who hashes what?

• Hash tables can be generic

– To store elements of type E, we just need E to be:

Hashable: convert any E to an int

• When hash tables are a reusable library (as they are in Java), the

division of responsibility generally breaks down into two roles:

• We will learn both roles, but most programmers “in the real world”

spend more time as clients while understanding the library

E int table-index
collision? collision

resolution

client hash table library

More on roles

Two roles must both contribute to minimizing collisions (heuristically)

• Client should aim for different ints for expected items

• Library should aim for putting “similar” ints in different indices

– Conversion to index is almost always “mod table-size”

– Using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?

Okay, what about keys that aren’t ints?

• If keys aren’t ints, the client must convert to an int

– Trade-off: speed versus distinct keys hashing to distinct ints

• Very important example: Strings

– Key space K = s0s1s2…sm-1

• (where si are chars: between 0 to 65,535, inclusive)

– Some choices: Which avoid collisions best?

1. h(K) = s0 % TableSize

2. h(K) = (s0 + s1 + … sm-1) % TableSize

3. h(K) = (s0 + s1 * 31 + s2 * 312 + … sm-1 * 31m-1) % TableSize

(I’ll demonstrate this is what Java does)

Specializing hash functions

How might you hash differently if all your strings were web

addresses (URLs)?

Hashing and comparing

• Need to emphasize a critical detail:

– We initially hash key E to get a table index

– To confirm that index has what we’re looking for we check if

our key equals the key stored at that index

• So a hash table needs a hash function and a way to compare keys

– The Java library uses an object-oriented approach:
each object has methods equals and hashCode

class Object {

boolean equals(Object o) {…}

int hashCode() {…}

…

}

Equal Objects Must Hash the Same

• The Java library make a crucial assumption clients must satisfy

– And all hash tables make analogous assumptions

• Object-oriented way of saying it:

If a.equals(b), then a.hashCode() == b.hashCode()

• Why is this essential?

– Necessary in order for correct hash table behavior

• Why is this up to the client?

– Both methods depend on private fields, so library can’t do it

• So always override hashCode correctly if you override equals

– Many libraries use hash tables on your objects

Example

CalendarDate.java in VS Code

Tougher example

• Suppose you had a Fraction class where equals returned

true for 1/2 and 3/6, etc.

• Then must override hashCode and cannot hash just based on

the numerator and denominator

– Need 1/2 and 3/6 to hash to the same int

• If you write software for a living, you are less likely to implement

hash tables from scratch than you are likely to encounter this

issue

One expert suggestion

• int result = 17;

• for-each field f

– int fieldHashcode =

• boolean: (f ? 1: 0)

• byte, char, short, int: (int) f

• long: (int) (f ^ (f >>> 32))

• float: Float.floatToIntBits(f)

• double: Double.doubleToLongBits(f), then as long above

• Object: object.hashCode()

– result = 31 * result + fieldHashcode

Conclusions and notes on hashing

• The hash table is one of the most important data structures

– Supports contains, put, get and remove efficiently

(constant time!)

– We can iterate over the keys and/or values, but they are not

guaranteed to be in any particular order

• Important to use a good hash function

• Side-comment: hash functions have uses beyond hash tables

– Examples: Cryptography, check-sums

• Big remaining topic: Handling collisions

