7 -
Ay

4 “ \,
L{ A > “. ‘
g 4"7‘9 2 £ [

CS«ZOl Data Structures

Hashlng |

Motivating Hash Tables
For a Map with n key, value pairs

put contains remove

* Unsorted linked-list O(n) O(n) O(n)
« Unsorted array O(n) O(n) O(n)
« Sorted linked list O(n) O(n) O(n)
e Sorted array O(n) O(logn) O(n)
- Balanced tree O(logn) O(logn) O(logn)
« Magic array O(1) O(1) O(1)

Sufficient “magic”:
— Remove the requirement that elements are ordered [easy]
— Use key to compute array index for an item in O(1) time [doable]
— Have a different index for every item [magic]

Hash Tables: Turn Key Into Array Index

« Aim for constant time put, get, contains, and remove
— “On average” under some often-reasonable assumptions

* A hash table is an array of some fixed size

hash table
0
 Basic idea;:
hash function:
Index = h(key)
>
All possible keys TableSize —1

(e.g., integers, strings)

Hash Tables: More Keys Than Spots

 There are m possible keys (m typically large, even infinite)
* We expect our table to have only n items
* nis much less than m (often written n << m)

Many maps have this property

— Compiler: All possible identifiers allowed by the language vs.
those used in some file of one program

— Database: All possible volunteer names vs. volunteers
signed up with Bauer for MN

— Al All possible chess-board configurations vs. those
considered by the current player

Hash functions

An ideal hash function:

* Fast to compute

« “Rarely” hashes two “used” keys to the same index hash table
— Often impossible in theory but easy in practice

— Will handle collisions in next lesson 0
hash function:
Index = h(key)
>
All possible keys TableSize -1

(e.g., Integers, strings)

Hashing integers

» Kkey space = integers

« Simple hash function:
h (key)
— Fairly fast and natural

key % TableSize

« Example:
— TableSize =10
— Insert 7, 18, 41, 34, 10

— (ignoring the values of these key-
value pairs—we’ll think of these as
data “along for the ride”)

© 00 N O O b W0 N - O

Hashing integers

» Kkey space = integers

« Simple hash function:
h (key)
— Fairly fast and natural

key % TableSize

« Example:
— TableSize =10
— Insert 7, 18, 41, 34, 10

— (As usual, ignoring data “along for
the ride”)

© 00 N O O b W0 N - O

Hashing integers

key space = integers

Simple hash function:
h (key)
— Fairly fast and natural

key % TableSize

Example:
— TableSize =10
— Insert 7, 18, 41, 34, 10

— (As usual, ignoring data “along for
the ride”)

© 00 N O O b W0 N - O

18

Hashing integers

key space = integers

Simple hash function:
h (key)
— Fairly fast and natural

key % TableSize

Example:
— TableSize =10
— Insert 7, 18, 41, 34, 10

— (As usual, ignoring data “along for
the ride”)

© 00 N O O b W0 N - O

41

18

Hashing integers

key space = integers

Simple hash function:
h (key)
— Fairly fast and natural

key % TableSize

Example:
— TableSize =10
— Insert 7, 18, 41, 34, 10

— (As usual, ignoring data “along for
the ride”)

© 00 N O O b W0 N - O

41

34

18

Hashing integers

key space = integers

Simple hash function:
h (key)
— Fairly fast and natural

key % TableSize

Example:
— TableSize =10
— Insert 7, 18, 41, 34, 10

— (As usual, ignoring data “along for
the ride”)

© 00 N O O b W0 N - O

10

41

34

18

Who hashes what?

« Hash tables can be generic
— To store elements of type E, we just need E to be:
Hashable: convert any E to an int

« When hash tables are a reusable library (as they are in Java), the
division of responsibility generally breaks down into two roles:

client hash table library

collision? ollision

E mmmes) it mmmms) table-index | :
> resolution

 We will learn both roles, but most programmers “in the real world”
spend more time as clients while understanding the library

More on roles

Some ambiguity in terminology on which parts are “hashing”
client hash table library

collision? collision
resolution

E mm=) int mmmss) table-index |
\—'—I
_'_I

“hashing”? “hashing™?

Two roles must both contribute to minimizing collisions (heuristically)
* Client should aim for different ints for expected items
« Library should aim for putting “similar” ints in different indices
— Conversion to index is almost always “mod table-size”
— Using prime numbers for table-size is common

Okay, what about keys that aren’t Ints?

« If keys aren’t ints, the client must convert to an int
— Trade-off: speed versus distinct keys hashing to distinct ints

* Very important example: Strings
— Key space K =545,S,...54.1
* (where s; are chars: between 0 to 65,535, inclusive)
— Some choices: Which avoid collisions best?

1. h(K) =sy, % TableSize
2. h(K)=(sqg+s;+...s,.7) % TableSize

3. h(K)=(sp+s;,*31l+s,*31%2+...s,,*31M) % TableSize
(I'll demonstrate this is what Java does)

Specializing hash functions

How might you hash differently if all your strings were web
addresses (URLS)?

Hashing and comparing

 Need to emphasize a critical detall:
— We initially hash key E to get a table index

— To confirm that index has what we’re looking for we check if
our key equals the key stored at that index

« So a hash table needs a hash function and a way to compare keys

— The Java library uses an object-oriented approach:
each object has methods equals and hashCode

class Object {
boolean equals (Object o) {..}
int hashCode () {..}

Equal Objects Must Hash the Same

The Java library make a crucial assumption clients must satisfy
— And all hash tables make analogous assumptions

« Object-oriented way of saying it:
If a.equals (b), then a.hashCode () == b.hashCode ()

* Why is this essential?

— Necessary in order for correct hash table behavior
* Why is this up to the client?

— Both methods depend on private fields, so library can’t do it
« So always override hashCode correctly if you override equals

— Many libraries use hash tables on your objects

Example

CalendarDate.java in VS Code

Tougher example

Suppose you had a Fraction class where equals returned
true for 1/2 and 3/6, etc.

Then must override hashCode and cannot hash just based on
the numerator and denominator

— Need 1/2 and 3/6 to hash to the same int

If you write software for a living, you are less likely to implement
hash tables from scratch than you are likely to encounter this
Issue

One expert suggestion

* intresult=17, Effective Java

Second Fdition

» for-each field f

— Int fieldHashcode =

* boolean: (f? 1: 0)

byte, char, short, int: (int) f ;
long: (int) (f * (f >>> 32)) | o=
float: Float.floatTolntBits(f)
double: Double.doubleTolLongBits(f), then as long above

* Object: object.nashCode()
— result = 31 * result + fieldHashcode

Conclusions and notes on hashing

The hash table is one of the most important data structures

— Supports contains, put, get and remove efficiently
(constant time!)

— We can iterate over the keys and/or values, but they are not
guaranteed to be in any particular order

Important to use a good hash function

Side-comment: hash functions have uses beyond hash tables
— Examples: Cryptography, check-sums

Big remaining topic: Handling collisions

