
CS 201: Data Structures

Hashing II

Aaron Bauer

Winter 2021

Hash Tables: Review

• Aim for constant-time put, contains, and remove

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

– But extensible as we’ll see

E int table-index
collision? collision

resolution

client hash table library

0

…

TableSize –1

hash table

Winter 2021 CS 201: Data Structures 2

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

Winter 2021 CS 201: Data Structures 3

Collision-avoidance

• With “x % TableSize” the number of collisions depends on

– the ints inserted (obviously)

– TableSize

• Larger table-size tends to help, but not always

– Example: 70, 24, 56, 43, 10

with TableSize = 10 and TableSize = 60

• Technique: Pick table size to be prime. Why?

– Real-life data tends to have a pattern

– “Multiples of 61” are probably less likely than “multiples of 60”

Winter 2021 CS 201: Data Structures 4

More on prime table size

If TableSize is 60 and…

– Lots of keys hash to multiples of 5, wasting 80% of table

– Lots of keys hash to multiples of 10, wasting 90% of table

– Lots of keys hash to multiples of 2, wasting 50% of table

If TableSize is 61…

– Collisions can still happen, but 5, 10, 15, 20, … will fill table

– Collisions can still happen but 10, 20, 30, 40, … will fill table

– Collisions can still happen but 2, 4, 6, 8, … will fill table

This “table-filling” property happens whenever the multiple and the
table-size have a greatest-common-divisor of 1

Winter 2021 CS 201: Data Structures 5

Handling Collisions: Separate Chaining

Chaining:

All keys that map to the same

table location are kept in a linked list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 11, 24, 106, 13, 46

with mod hashing
and TableSize = 11

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

Winter 2021 CS 201: Data Structures 6

Handling Collisions: Separate Chaining

11 / Chaining:

All keys that map to the same

table location are kept in a linked list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 11, 24, 106, 13, 46

with mod hashing
and TableSize = 11

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

Winter 2021 CS 201: Data Structures 7

Handling Collisions: Separate Chaining

11 /

24 /

Chaining:

All keys that map to the same

table location are kept in a linked list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 11, 24, 106, 13, 46

with mod hashing
and TableSize = 11

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

Winter 2021 CS 201: Data Structures 8

Handling Collisions: Separate Chaining

11 /

24 /

106 /

Chaining:

All keys that map to the same

table location are kept in a linked list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 11, 24, 106, 13, 46

with mod hashing
and TableSize = 11

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

Winter 2021 CS 201: Data Structures 9

Handling Collisions: Separate Chaining

11 /

13

106 /

24 /

Chaining:

All keys that map to the same

table location are kept in a linked list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 11, 24, 106, 13, 46

with mod hashing
and TableSize = 11

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

Winter 2021 CS 201: Data Structures 10

Handling Collisions: Separate Chaining

11 /

46

106 /

13 24 /

Chaining:

All keys that map to the same

table location are kept in a linked

list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 11, 24, 106, 13, 46

with mod hashing
and TableSize = 11

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

Winter 2021 CS 201: Data Structures 11

Thoughts on chaining

• Worst-case time for contains?

– Linear

– But only with really bad luck or bad hash function

– So not worth doing extra work to avoid this worst case

• Beyond asymptotic complexity, some “data-structure

engineering” may be warranted

– Linked list vs. array vs. chunked list (lists should be short!)

– Move-to-front

– Maybe leave room for 1 element (or 2?) in the table itself, to

optimize constant factors for the common case

• A time-space trade-off…

Winter 2021 CS 201: Data Structures 12

Time vs. space (constant factors only here)

0 11 /

1 / X

2 46

3 / X

4 / X

5 / X

6 / X

7 106 /

8 / X

9 / X

10 / X

13 24 /

11 /

46

106 /

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

13 24 /

Winter 2021 CS 201: Data Structures 13

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

N

TableSize
 =

 number of elements

Under chaining, the average number of elements per bucket is ___

Winter 2021 CS 201: Data Structures 14

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

N

TableSize
 =

 number of elements

Under chaining, the average number of elements per bucket is 

So if some puts are followed by random contains, then on average:

• Each unsuccessful contains compares against ____ items

Winter 2021 CS 201: Data Structures 15

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

N

TableSize
 =

 number of elements

Under chaining, the average number of elements per bucket is 

So if some puts are followed by random contains, then on average:

• Each unsuccessful contains compares against  items

• Each successful contains compares against _____ items

Winter 2021 CS 201: Data Structures 16

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

N

TableSize
 =

 number of elements

Under chaining, the average number of elements per bucket is 

So if some puts are followed by random contains, then on average:

• Each unsuccessful contains compares against  items

• Each successful contains compares against  / 2 items

So we like to keep  fairly low (e.g., 1 or 1.5 or 2) for chaining

Winter 2021 CS 201: Data Structures 17

Alternative: Use empty space in the table

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /

Winter 2021 CS 201: Data Structures 18

Alternative: Use empty space in the table

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Winter 2021 CS 201: Data Structures 19

Alternative: Use empty space in the table

0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Winter 2021 CS 201: Data Structures 20

Alternative: Use empty space in the table

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Winter 2021 CS 201: Data Structures 21

Alternative: Use empty space in the table

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Winter 2021 CS 201: Data Structures 22

Probing hash tables

Trying the next spot is called probing (also called open addressing)

– We just did linear probing

• ith probe was (h(key) + i) % TableSize

Open addressing does poorly with high load factor 

– So want larger tables

– Too many probes means no more O(1)

Winter 2021 CS 201: Data Structures 23

Other operations

put finds an open table position using a probe function

What about contains?

– Must use same probe function to “retrace the trail” for the data

– Unsuccessful search when reach empty position

What about remove?

– Must use “lazy” deletion. Why?

• Marker indicates “no data here, but don’t stop probing”

– Note: remove with chaining is plain-old list-remove

Winter 2021 CS 201: Data Structures 24

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe

function is quick to compute (which is a good thing)

[R. Sedgewick]

Tends to produce

clusters, which lead to

long probing sequences

• Called primary

clustering

• Saw this starting in

our example

Winter 2021 CS 201: Data Structures 25

Analysis of Linear Probing

• For any  < 1, linear probing will find an empty slot

– It is “safe” in this sense: no infinite loop unless table is full

• Linear-probing performance degrades rapidly as table gets full

• By comparison, chaining performance is linear in  and has no trouble

with >1

Winter 2021 27CS 201: Data Structures

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0
.0

1

0
.0

9

0
.1

7

0
.2

5

0
.3

3

0
.4

1

0
.4

9

0
.5

7

0
.6

5

0
.7

3

0
.8

1

0
.8

9

0
.9

7

A
v
e

ra
g

e
 #

 o
f

P
ro

b
e

s

Load Factor

Linear Probing

linear probing
not found

linear probing
found

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0
.0

1

0
.0

7

0
.1

3

0
.1

9

0
.2

5

0
.3

1

0
.3

7

0
.4

3

0
.4

9

0
.5

5

0
.6

1

0
.6

7

0
.7

3

0
.7

9

A
v
e

ra
g

e
 #

 o
f

P
ro

b
e

s

Load Factor

Linear Probing

linear probing
not found

linear probing
found

Quadratic probing

• We can avoid primary clustering by changing the probe function

(h(key) + f(i)) % TableSize

• A common technique is quadratic probing:

f(i) = i2

– So probe sequence is:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 4) % TableSize

• 3rd probe: (h(key) + 9) % TableSize

• …

• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”

Winter 2021 28CS 201: Data Structures

Quadratic Probing Example

Winter 2021 29CS 201: Data Structures

0

1

2

3

4

5

6

7

8

9

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Winter 2021 30CS 201: Data Structures

0

1

2

3

4

5

6

7

8

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Winter 2021 31CS 201: Data Structures

0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Winter 2021 32CS 201: Data Structures

0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Winter 2021 33CS 201: Data Structures

0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Winter 2021 34CS 201: Data Structures

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Another Quadratic Probing Example

Winter 2021 35CS 201: Data Structures

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6

Another Quadratic Probing Example

Winter 2021 36CS 201: Data Structures

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6 76

Another Quadratic Probing Example

Winter 2021 37CS 201: Data Structures

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

Winter 2021 38CS 201: Data Structures

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

Winter 2021 39CS 201: Data Structures

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76

Another Quadratic Probing Example

Winter 2021 40CS 201: Data Structures

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Another Quadratic Probing Example

Winter 2021 41CS 201: Data Structures

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Oh nooooo!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

From Bad News to Good News

• Bad news:

– Quadratic probing can cycle through the same full indices,

never terminating despite table not being full

• Good news:

– If TableSize is prime and  < ½, then quadratic probing will

find an empty slot in at most TableSize/2 probes

– So: If you keep  < ½ and TableSize is prime, no need to

detect cycles

Winter 2021 42CS 201: Data Structures

Rehashing

• As with array-based stacks/queues/lists, if table gets too full,

create a bigger table and copy everything

– Re-apply the hash function to find the next index for each key

• With chaining, we get to decide what “too full” means

– Keep load factor reasonable (e.g., < 1)?

– Consider average or max size of non-empty chains?

• For probing, half-full is a good rule of thumb

• New table size

– Twice-as-big is a good idea, except that won’t be prime!

– So go about twice-as-big

– Can have a list of prime numbers in your code since you won’t

grow more than 20-30 times

Winter 2021 48CS 201: Data Structures

