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Spanning Trees

• A simple problem: Given a connected undirected graph G=(V,E), 
find a minimal subset of edges such that G is still connected
– A graph G2=(V,E2) such that G2 is connected and removing 

any edge from E2 makes G2 disconnected
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Observations

1. Any solution to this problem is a tree
– Recall a tree does not need a root; just means acyclic
– For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
– So |E| ≥ |V|-1

4. A tree with |V| nodes has |V|-1 edges
– So every solution to the spanning tree problem has |V|-1

edges
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Motivation

A spanning tree connects all the nodes with as few edges as possible

• Example: want there to be ice-free paths between any two 
campus buildings—what is the minimum set of paved walks that 
need to be de-iced?

In most compelling uses, we have a weighted undirected graph and 
we want a tree of least total cost 

• Example: Electrical wiring for a house or wires on a computer chip
• Example: A road network if you cared about asphalt cost rather 

than travel time

This is the minimum spanning tree problem
– Will do that next, after intuition from the simpler case
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Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal 
will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not 
create a cycle

Winter 2021 5CS 201: Data Structures



Spanning tree via DFS
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spanning_tree(Graph G) {
for each node i: i.marked = false
for some node i: f(i)

}
f(Node i) {
i.marked = true
for each j adjacent to i:

if(!j.marked) {
add(i,j) to output
f(j) // DFS

}
}

Correctness: DFS reaches each node.  We add one edge to connect it
to the already visited nodes.  Order affects result, not correctness.

Time: O(|E|)



Example

Stack
f(1)
top of stack
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Example

Stack
f(1)
f(2)
top
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Example

Stack
f(1)
f(2)
f(7)
top
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Example

Stack
f(1)
f(2)
f(7)
f(5)
top
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Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
top
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Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)
top
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Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)  f(6)
f(3)
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Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)



Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)  f(6)
f(3)

Winter 2021 14CS 201: Data Structures

1
2

3

4

5

6

7

Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)



Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
– Goal is to build an acyclic connected graph
– When we add an edge, it adds a vertex to the tree 

• Else it would have created a cycle
– The graph is connected, so we reach all vertices

Efficiency:
– Depends on how quickly you can detect cycles
– Reconsider after the example
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 19CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), 



Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Output: (1,2), (3,4), (5,6), (5,7), (1,5) 



Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 24CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3) 

Can stop once we
have |V|-1 edges



Cycle Detection

• To decide if an edge could form a cycle is O(|V|) because we 
may need to traverse all edges already in the output

• So overall algorithm would be O(|V||E|)

• But there is a faster way we know: a data structure called union-
find!
– All we need to know is that it efficiently keeps track of which 

elements are connected (can check for cycle in about O(1))
– All elements start out disconnected
– union(int a, int b) connects a and b (like an edge in a graph)
– connectedTo(int a, int b) returns whether a and b are 

connected (again like a graph, could be  a→x→y→b)
– Read Algorithms 1.5 for the details
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https://algs4.cs.princeton.edu/15uf/


Summary So Far

The spanning-tree problem
– Add nodes to partial tree approach is O(|E|)
– Add acyclic edges approach is almost O(|E|)

• Using union-find “as a black box”

But really want to solve the minimum-spanning-tree problem
– Given a weighted undirected graph, give a spanning tree of 

minimum weight
– Same two approaches will work with minor modifications
– Both will be O(|E|log |V|)
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Getting to the Point

Algorithm #1
Shortest-path is to Dijkstra’s Algorithm

as
Minimum Spanning Tree is to Prim’s Algorithm

(Both based on expanding cloud of known vertices, basically using 
a priority queue instead of a DFS stack)

Algorithm #2
Kruskal’s Algorithm for Minimum Spanning Tree

is
Exactly our 2nd approach to spanning tree 

but process edges in cost order
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Prim’s Algorithm Idea

Idea: Grow a tree by adding an edge from the “known” vertices to 
the “unknown” vertices.  Pick the edge with the smallest weight 
that connects “known” to “unknown.”

Recall Dijkstra “picked edge with closest known distance to source” 
– That is not what we want here
– Otherwise identical (!)
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The Algorithm
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1. For each node v, set  v.cost = ¥ and v.known = false

2. Choose any node v 
a) Mark v as known
b) For each edge (v,u) with weight w, set u.cost=w and 

u.prev=v

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (v,u) with weight w,

if(w < u.cost) {
u.cost = w;
u.prev = v;

}



Example
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Example
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Example
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Example
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Example
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Example
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Example
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Analysis

• Run-time
– Same as Dijkstra
– O(|E|log |V|) using a priority queue

• Costs/priorities are just edge-costs, not path-costs
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Kruskal’s Algorithm
Idea: Grow a forest out of edges that do not grow a cycle, just like for 

the spanning tree problem.  
– But now consider the edges in order by weight

So: 
– Sort edges: O(|E|log |E|) 
– Iterate through edges using union-find for cycle detection 

almost O(|E|)

Somewhat better:
– Floyd’s algorithm to build min-heap with edges O(|E|)
– Iterate through edges using union-find for cycle detection and 
deleteMin to get next edge O(|E|log |E|)

– Not better worst-case asymptotically, but often stop long 
before considering all edges
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Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Union-find has each node disconnected
3. While output size < |V|-1

– Consider next smallest edge (u,v)
– if connectedTo(u,v) indicate u and v are disconnected

• output (u,v)
• union(u,v)

Recall invariant: 
u and v in connected in union-find if and only if connected in 
output-so-far
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Example 
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Example 
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1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D)



Example 
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1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D)



Example 
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1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)



Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)



Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)



Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)



Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)



Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)


