
CS 201: Data Structures
Minimum Spanning Trees

Aaron Bauer
Winter 2021

Spanning Trees

• A simple problem: Given a connected undirected graph G=(V,E),
find a minimal subset of edges such that G is still connected
– A graph G2=(V,E2) such that G2 is connected and removing

any edge from E2 makes G2 disconnected

Winter 2021 2CS 201: Data Structures

Observations

1. Any solution to this problem is a tree
– Recall a tree does not need a root; just means acyclic
– For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
– So |E| ≥ |V|-1

4. A tree with |V| nodes has |V|-1 edges
– So every solution to the spanning tree problem has |V|-1

edges

Winter 2021 3CS 201: Data Structures

Motivation

A spanning tree connects all the nodes with as few edges as possible

• Example: want there to be ice-free paths between any two
campus buildings—what is the minimum set of paved walks that
need to be de-iced?

In most compelling uses, we have a weighted undirected graph and
we want a tree of least total cost

• Example: Electrical wiring for a house or wires on a computer chip
• Example: A road network if you cared about asphalt cost rather

than travel time

This is the minimum spanning tree problem
– Will do that next, after intuition from the simpler case

Winter 2021 4CS 201: Data Structures

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal
will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not
create a cycle

Winter 2021 5CS 201: Data Structures

Spanning tree via DFS

Winter 2021 6CS 201: Data Structures

spanning_tree(Graph G) {
for each node i: i.marked = false
for some node i: f(i)

}
f(Node i) {
i.marked = true
for each j adjacent to i:

if(!j.marked) {
add(i,j) to output
f(j) // DFS

}
}

Correctness: DFS reaches each node. We add one edge to connect it
to the already visited nodes. Order affects result, not correctness.

Time: O(|E|)

Example

Stack
f(1)
top of stack

Winter 2021 7CS 201: Data Structures

1
2

3

4

5

6

7

Output:

Example

Stack
f(1)
f(2)
top

Winter 2021 8CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2)

Example

Stack
f(1)
f(2)
f(7)
top

Winter 2021 9CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (2,7)

Example

Stack
f(1)
f(2)
f(7)
f(5)
top

Winter 2021 10CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
top

Winter 2021 11CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)
top

Winter 2021 12CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4),(4,3)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Winter 2021 13CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Winter 2021 14CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
– Goal is to build an acyclic connected graph
– When we add an edge, it adds a vertex to the tree

• Else it would have created a cycle
– The graph is connected, so we reach all vertices

Efficiency:
– Depends on how quickly you can detect cycles
– Reconsider after the example

Winter 2021 15CS 201: Data Structures

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 16CS 201: Data Structures

1
2

3

4

5

6

7

Output:

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 17CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 18CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (3,4)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 19CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6),

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 20CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 21CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 22CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 23CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Winter 2021 24CS 201: Data Structures

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we
have |V|-1 edges

Cycle Detection

• To decide if an edge could form a cycle is O(|V|) because we
may need to traverse all edges already in the output

• So overall algorithm would be O(|V||E|)

• But there is a faster way we know: a data structure called union-
find!
– All we need to know is that it efficiently keeps track of which

elements are connected (can check for cycle in about O(1))
– All elements start out disconnected
– union(int a, int b) connects a and b (like an edge in a graph)
– connectedTo(int a, int b) returns whether a and b are

connected (again like a graph, could be a→x→y→b)
– Read Algorithms 1.5 for the details

Winter 2021 25CS 201: Data Structures

https://algs4.cs.princeton.edu/15uf/

Summary So Far

The spanning-tree problem
– Add nodes to partial tree approach is O(|E|)
– Add acyclic edges approach is almost O(|E|)

• Using union-find “as a black box”

But really want to solve the minimum-spanning-tree problem
– Given a weighted undirected graph, give a spanning tree of

minimum weight
– Same two approaches will work with minor modifications
– Both will be O(|E|log |V|)

Winter 2021 26CS 201: Data Structures

Getting to the Point

Algorithm #1
Shortest-path is to Dijkstra’s Algorithm

as
Minimum Spanning Tree is to Prim’s Algorithm

(Both based on expanding cloud of known vertices, basically using
a priority queue instead of a DFS stack)

Algorithm #2
Kruskal’s Algorithm for Minimum Spanning Tree

is
Exactly our 2nd approach to spanning tree

but process edges in cost order

Winter 2021 27CS 201: Data Structures

Prim’s Algorithm Idea

Idea: Grow a tree by adding an edge from the “known” vertices to
the “unknown” vertices. Pick the edge with the smallest weight
that connects “known” to “unknown.”

Recall Dijkstra “picked edge with closest known distance to source”
– That is not what we want here
– Otherwise identical (!)

Winter 2021 28CS 201: Data Structures

The Algorithm

Winter 2021 29CS 201: Data Structures

1. For each node v, set v.cost = ¥ and v.known = false

2. Choose any node v
a) Mark v as known
b) For each edge (v,u) with weight w, set u.cost=w and

u.prev=v

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (v,u) with weight w,

if(w < u.cost) {
u.cost = w;
u.prev = v;

}

Example

Winter 2021 30CS 201: Data Structures

A B

C
D

F

E

G

∞

∞

∞

∞
∞

∞

2

1
2

vertex known? cost prev
A ??
B ??
C ??
D ??
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

∞

Example

Winter 2021 31CS 201: Data Structures

A B

C
D

F

E

G

0 2

∞

2

1
∞

∞

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 2 A
D 1 A
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Example

Winter 2021 32CS 201: Data Structures

A B

C
D

F

E

G

0 2

6

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D

5

1
1

1

2 6
5 3

10

Example

Winter 2021 33CS 201: Data Structures

A B

C
D

F

E

G

0 2

2

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 5 D

5

1
1

1

2 6
5 3

10

Example

Winter 2021 34CS 201: Data Structures

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Example

Winter 2021 35CS 201: Data Structures

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Example

Winter 2021 36CS 201: Data Structures

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G 3 E

5

1
1

1

2 6
5 3

10

Example

Winter 2021 37CS 201: Data Structures

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

5

1
1

1

2 6
5 3

10

Analysis

• Run-time
– Same as Dijkstra
– O(|E|log |V|) using a priority queue

• Costs/priorities are just edge-costs, not path-costs

Winter 2021 38CS 201: Data Structures

Kruskal’s Algorithm
Idea: Grow a forest out of edges that do not grow a cycle, just like for

the spanning tree problem.
– But now consider the edges in order by weight

So:
– Sort edges: O(|E|log |E|)
– Iterate through edges using union-find for cycle detection

almost O(|E|)

Somewhat better:
– Floyd’s algorithm to build min-heap with edges O(|E|)
– Iterate through edges using union-find for cycle detection and
deleteMin to get next edge O(|E|log |E|)

– Not better worst-case asymptotically, but often stop long
before considering all edges

Winter 2021 39CS 201: Data Structures

Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Union-find has each node disconnected
3. While output size < |V|-1

– Consider next smallest edge (u,v)
– if connectedTo(u,v) indicate u and v are disconnected

• output (u,v)
• union(u,v)

Recall invariant:
u and v in connected in union-find if and only if connected in
output-so-far

Winter 2021 40CS 201: Data Structures

Example

Winter 2021 41CS 201: Data Structures

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Example

Winter 2021 42CS 201: Data Structures

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Example

Winter 2021 43CS 201: Data Structures

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Example

Winter 2021 44CS 201: Data Structures

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Example

Winter 2021 45CS 201: Data Structures

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Example

Winter 2021 46CS 201: Data Structures

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Example

Winter 2021 47CS 201: Data Structures

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Example

Winter 2021 48CS 201: Data Structures

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Example

Winter 2021 49CS 201: Data Structures

A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

