
Reverse Engineering
with gdb
Background for Lab 2: Bomblab, CS 208

x86-64 Linux Register Usage #1
•%rax

• Return value
• Also caller-saved
• Can be modified by procedure

•%rdi, ..., %r9
• Arguments
• Also caller-saved
• Can be modified by procedure

•%r10, %r11
• Caller-saved
• Can be modified by procedure

%rax

%rdx

%rcx

Return
value

%r8

%r9

%r10

%r11

%rdi

%rsi

Arguments

Caller-saved
temporaries

x86-64 Linux Register Usage #2

• %rbx, %r12, %r13, %r14
• Callee-saved
• Callee must save & restore
• (i.e., these registers must have the same

value when the procedure returns as they did
when it started)

• %rbp
• Callee-saved
• Callee must save & restore
• May be used as a frame pointer
• Can mix & match

• %rsp
• Stack pointer, special form of callee save
• Restored to original value upon exit from procedure

%rbx

%rsp

Callee-saved
Temporaries

Special
%rbp

%r12

%r13

%r14

x86-64 Linux Register Usage #3

Most Important Registers:

• %rax: return value

• %rsp: stack pointer

• %rdi: first argument

• %rsi: second argument

Helpful GDB Commands
disassemble: displays assembly

int squareInt(int x) {
return x * x;

}

** disas != disa in gdb! Be careful with these shortcuts on bomblab

(gdb) disassemble squareInt

Dump of assembler code for function
squareInt:
0x000000000040091d <+0>: mov %edi,%eax
0x000000000040091f <+2>: imul %edi,%eax
0x0000000000400922 <+5>: retq
End of assembler dump.

Helpful GDB Commands

Breakpoints: stops execution of program when it reaches certain point
• break function_name: breaks once you call a specific function

• break *0x…: breaks when you execute instruction at a certain
address

• info b: displays information about all breakpoints currently set

• disable #: disables breakpoint with id equal to #

Helpful GDB Commands

Navigating through assembly:
• stepi: moves one instruction forward, will step into functions

encountered

• nexti: moves one instruction forward, skips over functions called

• c: continues execution until next breakpoint is hit

What to do
• Don’t understand what a big block of assembly does? GDB

• Need to figure out what’s in a specific memory address? GDB

• Can’t trace how 4 – 6 registers are changing over time? GDB

• Have no idea how to start the assignment? Writeup

• Need to know how to use certain GDB commands? Writeup
• Also useful: http://csapp.cs.cmu.edu/3e/docs/gdbnotes-x86-64.pdf
• GDB intro video:

https://courses.cs.washington.edu/courses/cse351/videos/tutorials/gdb.mp4
• Many resources: http://cs.carleton.edu/faculty/awb/cs208/f21/#gdb-resources

• Don’t know what an assembly instruction does? Topic notes/textbook

• Confused about control flow or stack discipline? Topic notes/textbook

http://csapp.cs.cmu.edu/2e/docs/gdbnotes-x86-64.pdf
https://courses.cs.washington.edu/courses/cse351/videos/tutorials/gdb.mp4
http://cs.carleton.edu/faculty/awb/cs208/f21/#gdb-resources

Basic GDB tips

• Many commands have shortcuts. Dissasemble → disas. Disable → dis
• Do not mix these up! Disable will disable all your breakpoints, which may cause you to blow up your bomb.

• (gdb) print [any valid C expression]
• This can be used to study any kind of local variable or memory location
• Use casting to get the right type (e.g. print *(long *)ptr)

• (gdb) x [some format specifier] [some memory address]
• Examines memory. See the handout for more information. Same as print *(addr), but more convenient.

• (gdb) set disassemble-next-line on
(gdb) show disassemble-next-line

• Shows the next assembly instruction after each step instruction

• (gdb) info registers Shows the values of the registers
• (gdb) info breakpoints Shows all current breakpoints
• (gdb) quit Exits gdb

Quick Assembly Info

• $rdi holds the first argument to a function call, $rsi holds the second
argument, and $rax will hold the return value of the function call.

• Many functions start with “push %rbx” and end with “pop %rbx”. Long
story short, this is because %rbx is “callee-saved”.

• The stack is often used to hold local variables
• Addresses in the stack are usually in the 0x7fffffff… range

• Know how $rax is related to $eax and $al.
• Most cryptic function calls you’ll see (e.g. callq … <_exit@plt>) are
calls to C library functions. If necessary, use the Unix man pages to
figure out what the functions do.

Quick Assembly Info

• $ objdump -d [name of executable] > [any file name]
• Saves the assembly code of the executable into the file.
• Feel free to annotate the assembly in your favorite text editor.

Activity Walkthrough

• $ make
• $ cat gdb-activity.c // display the source code of gdb-activity
• $ gdb gdb-activity
• (gdb) disassemble compare
• Q. Where is the return value set in compare?

• (gdb) break compare
• Now run gdb-activity with two numbers
• Q. Using nexti or stepi, how does the value in register %rbx change,

leading to the cmp instruction?

• (gdb) run 200 3
• About to run push %rbx
• $rdi = 200
• $rsi = 3
• $rbx = [$rbx from somewhere else]
• $rax = [garbage value]

• Stack:
[some old stack items]

• (gdb) nexti

• About to run mov %rdi, %rbx
• $rdi = 200
• $rsi = 3
• $rbx = [$rbx from somewhere else]
• $rax = [garbage value]

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti

• About to run add $0x5, %rbx
• $rdi = 200
• $rsi = 3
• $rbx = 200
• $rax = [garbage value]

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti

• About to run add %rsi, %rbx
• $rdi = 200
• $rsi = 3
• $rbx = 205
• $rax = [garbage value]

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti

• About to run cmp 0xd0, %rbx
 & other instructions

• $rdi = 200
• $rsi = 3
• $rbx = 208 (= 0xd0)
• $rax = [garbage value]

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti
• (gdb) nexti
• (gdb) nexti

• About to run pop %rbx
• $rdi = 200
• $rsi = 3
• $rbx = 208 = 0xd0
• $rax = 1

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti

• About to run retq

• $rdi = 200

• $rsi = 3

• $rbx = [$rbx from somewhere else]

• $rax = 1

• Stack:
[some old stack items]

What is Bomb Lab?

• An exercise in reading x86-64 assembly code.

• A chance to practice using GDB (a debugger).

• Why?
• x86 assembly is low level machine code. Useful for understanding security exploits or

tuning performance.

• GDB can save you days of work in future labs *cough Malloc cough* and can be helpful long after you
finish this class.

Downloading Your Bomb

•Here are some highlights of the write-up:

• Each bomb is unique

• Bombs have six phases which get progressively harder.

• Make sure to read the writeup for more tips and common
mistakes you might make.

Detonating Your Bomb

• Blowing up your bomb doesn’t cost you, but it does print “BOOM!!!”
• It’s very easy to prevent explosions using break points in GDB.

• Inputting the correct string moves you to the next phase.

• Don’t tamper with the bomb. Skipping or jumping between phases
detonates the bomb.

• You have to solve the phases in order they are given.

Bomb Hints
• Mr. Dr. The Professor may be evil, but he isn’t cruel. You may assume

that functions do what their name implies
• i.e. phase_1() is most likely the first phase. printf() is just printf(). If there is an

explode_bomb() function, it would probably help to set a breakpoint there!

• Use the man pages for library functions.

• Although you can examine the assembly for snprintf(), we assure you that it’s easier to
use the man pages ($ man snprintf) than to decipher assembly code for system calls.

• Most cryptic function calls you’ll see (e.g. callq … <_exit@plt>) are
also calls to C library functions.

• You can safely ignore the @plt as that refers to dynamic linking.

