CS 208, Winter 2020
Lab 0: Welcome to C
Assigned: Jan. 10
Due: Monday, Jan. 20, 9:00pm

1 Introduction

This lab will give you practice in the style of C programming you will need to be able to do
proficiently, especially for the later assignments in the class. Specific skills include

e Explicit memory management, as required in C
e Creating and manipulating pointer-based data structures
e Working with strings

e Enhancing the performance of key operations by storing redundant information in data struc-
tures

e Implementing robust code that operates correctly with invalid arguments, including NULL
pointers

You will implement a queue, supporting both last-in, first-out (LIFO) and first-in-first-out (FIFO)
queuing disciplines. The underlying data structure is a singly-linked list, enhanced to make some
of the operations more efficient.

2 Logistics

Download the starter code for this lab from the course website:
http://cs.carleton.edu/faculty/awb/cs208/w20/1ab0-handout. tar|If you're working on mirage,
you can download the tar file to your current directory by running

> wget http://cs.carleton.edu/faculty/awb/cs208/w20/1ab0-handout. tar

This is an individual project. All submissions are electronic. You can do this assignment on any
machine you choose. The testing for your code will be done on a CS department Ubuntu Linux

http://cs.carleton.edu/faculty/awb/cs208/w20/lab0-handout.tar

machine. We advise you to test your code on mirage before submitting it. Before you begin, please
take the time to review the |course policy on academic honesty and collaboration.

Note that for this lab (and every lab) you will be asked to report how many hours you spent working
on it, so please try and keep track.

3 Resources
Here are some sources of material you may find useful:

1. C programming. Our recommended text is Kernighan and Ritchie, The C' Programming Lan-
guage, second edition. One copy is on reserve at Gould. For this assignment, Chapters 5 and
6 are especially important. There are good jonline resources as well.

2. Linked lists. Here are a couple good descriptions for you to consult:

e https://people.engr.ncsu.edu/efg/210/s99/Notes/LinkedList.1.html
e https://medium.com/basecs/whats-a-linked-list-anyway-part-1-d8b7e6508b9d

3. Linux man pages. The authoritative documentation on a library function FUN can be re-
trieved via the command “man FFUN.” Some useful functions for this lab include:

Memory management: Functions malloc and free.

String operations: Functions strlen, strcpy, and strncpy. (Beware of the behavior of
strncpy when truncating strings!)

As the Academic Honesty Policy states, you should not search the web or ask others for solutions
to the lab. That means that search queries such as “linked-list implementation in C” are off limits.

4 QOverview

The file queue.h contains declarations of the following structures:

/* Linked list element */
typedef struct list_ele {
char *value;
struct list_ele *next;
} list_ele_t;

/* Queue structure */
typedef struct {

list_ele_t *head; /* Linked list of elements */
} queue_t;

http://cs.carleton.edu/faculty/awb/cs208/w20/#academic-honesty
http://cs.carleton.edu/faculty/awb/cs208/w20/#c-resources
https://people.engr.ncsu.edu/efg/210/s99/Notes/LinkedList.1.html
https://medium.com/basecs/whats-a-linked-list-anyway-part-1-d8b7e6508b9d

These are combined to implement a queue of strings, as illustrated in Figure The top-level
representation of a queue is a structure of type queue_t. In the starter code, this structure contains
only a single field head, but you will want to add other fields. The queue contents are represented as
a singly-linked list, with each element represented by a structure of type 1list_ele_t, having fields
value and next, storing a pointer to a string and a pointer to the next list element, respectively.
The final list element has its next pointer set to NULL. You may add other fields to the structure
list_ele, although you need not do so.

Queue List head List tail

NN N\

head| @ » © @ ® o » @ | NuLL

\ 4

Additional
fields ® v v v
63]61]62]100 62|65]61]164]00]163]61]62]00
c a b b e a d c a b

Figure 1: Linked-list implementation of a queue. Each list element has a value field, pointing
to an array of characters (C’s representation of strings), and a next field pointing to the next list
element. Characters are encoded according to the ASCII encoding (shown in hexadecimal.)

Recall that a string is represented in C as an array of values of type char. On most machines, data
type char is represented as a single byte. To store a string of length [, the array has [+ 1 elements,
with the first [storing the codes (typically ASCIIE| format) for the characters and the final one
being set to 0. The value field of the list element is a pointer to the array of characters. The figure
indicates the representation of the list ["cab", "bead", "cab"], with characters a-e represented
in hexadecimal as ASCII codes 61-65. Observe how the two instances of the string "cab" are
represented by separate arrays—each list element should have a separate copy of its string.

In our C code, a queue is a pointer of type queue_t *. We distinguish two special cases: a NULL
queue is one for which the pointer has value NULL. An empty queue is one pointing to a valid
structure, but the head field has value NULL. Your code will need to deal properly with both of
these cases, as well as queues containing one or more elements.

5 Programming Task
Your task is to modify the code in queue.h and queue. c to fully implement the following functions.

g_new: Create a new, empty queue.

1Short for “American Standard Code for Information Interchange,” developed for communicating via teletype
machines.

a_free: Free all storage used by a queue.

q_insert_head: Attempt to insert a new element at the head of the queue (LIFO discipline).
g_insert_tail: Attempt to insert a new element at the tail of the queue (FIFO discipline).
g_remove_head: Attempt to remove the element at the head of the queue.

g_size: Compute the number of elements in the queue.

g_reverse: Reorder the list so that the queue elements are reversed in order. This function
should not allocate or free any list elements (either directly or via calls to other functions that
allocate or free list elements.) Instead, it should rearrange the existing elements.

More details can be found in the comments in these two files, including how to handle invalid
operations (e.g., removing from an empty or NULL queue), and what side effects and return values
the functions should have.

For functions that provide strings as arguments, you must create and store a copy of the string by
calling malloc to allocate space (remember to include space for the terminating character) and then
copying from the source to the newly allocated space. When it comes time to free a list element,
you must also free the space used by the string. You cannot assume any fixed upper bound on the
length of a string—you must allocate space for each string based on its length.

Two of the functions: g_insert_tail and g_size will require some effort on your part to meet the
required performance standards. Naive implementations would require O(n) steps for a queue with
n elements. We require that your implementations operate in time O(1), i.e., that the operation
will require only a fixed number of steps, regardless of the queue size. You can do this by including
other fields in the queue_t data structure and managing these values properly as list elements are
inserted, removed and reversed.

Your program will be tested on queues with over 1,000,000 elements. You will find that you cannot
operate on such long lists using recursive functions, since that would require too much stack space.
Instead, you need to use a loop to traverse the elements in a list.

6 Testing

You can compile your code using the command:
> make
If there are no errors, the compiler will generate an executable program qtest, providing a command

interface with which you can create, modify, and examine queues. Documentation on the available
commands can be found by starting this program and running the help command:

> ./qtest
cmd>help

The following file (traces/trace-eg.cmd) illustrates an example command sequence:

Demonstration of queue testing framework
Initial queue is NULL.

show

Create empty queue

new

Fill it with some values. First at the head
ih dolphin

5

ih bear

ih gerbil

Now at the tail

it meerkat

it bear

Reverse it

reverse

See how long it is

size

Delete queue. Goes back to a NULL queue.
free

Exit program

quit

You can see the effect of these commands by operating qtest in batch mode:

> ./qtest -f traces/trace-eg.cmd

With the starter code, you will see that many of these operations are not implemented properly.

The traces directory contains 15 trace files, with names of the form trace-k-cat.txt, where k is
the trace number, and cat specifies the category of properties being tested. Each trace consists of a
sequence of commands, similar to those shown above. They test different aspects of the correctness,
robustness, and performance of your program. You can use these, your own trace files, and direct

interactions with gtest to test and debug your program.

7 Evaluation

Your program will be evaluated using the fifteen traces described above. You will given credit (either
2, 4, or 7 points, depending on the trace) for each one that executes correctly. This plus 3 points
for submitting feedback.txt will be your score for the the lab. The driver program driver.py
runs qtest on the traces and computes the score. This is the same program that will be used to

compute your grade. You can invoke the driver directly with the command:

> ./driver.py

or with the command:

> make test

8 What to Turn In

We will use the COURSES network drive for lab submissions. You can find instructions on how to
access it herel If you are on mirage, you can mount it in your home directory by running

linux> sudo map-courses
It will prompt you for your password, your username, and then your password again. A COURSES
directory will appear with a ¢s208-01-w20 directory (possibly in addition to those for other courses)

inside it. The Hand-In directory in the c¢s208 directory should contain a directory with your
username—this is where you will copy files for submission.

Using make to generate qtest also has the effect of generating a file handin. tar (you should do this
on a Linux machine). Inside your Hand-In directory, create a lab0 directory. Copy handin.tar
and a text file called feedback.txt there.

Your feedback.txt is a way for me to check in and get a sense of how this lab went for you. Please
include the following information:

e How many hours you spent outside of class on this homework.
e The difficulty of this homework: too easy, easy, moderate, challenging, or too hard.

e What you learned on this homework (very briefly). Rate the educational value relative to the
time invested from 1 (low) to 5 (high).

This lab is adapted from the C Programming Lab developed for CMU’s 15-213 (Introduction to Computer Systems),

available here.

https://wiki.carleton.edu/display/itskb/Network+Drives#NetworkDrives-COURSES
https://www.cs.cmu.edu/afs/cs/academic/class/15213-f19/www/labs/cprogramminglab.pdf

	Introduction
	Logistics
	Resources
	Overview
	Programming Task
	Testing
	Evaluation
	What to Turn In

