
CS 208, Winter 2020, Lab 1

Data Lab: Manipulating Bits

Assigned: Jan. 20

Due: Wednesday, Jan. 29, 9:00pm

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers
and floating point numbers. You’ll do this by solving a series of programming “puzzles.” Many of
these puzzles are quite artificial, but you’ll find yourself thinking much more about bits in working
your way through them.

2 Logistics

This is an individual project. All submissions are electronic. Clarifications and corrections will be
posted via Moodle announcements.

3 Handout Instructions

You can find the files you need for this lab in the CourseMaterials in our 208 COURSES directory
or from the course web page here. Remember you can run the commmand wget followed by the
URL for the tar file to download it onto mirage.

Start by copying lab1-handout.tar to a (protected) directory on a Linux machine in which you
plan to do your work. Then give the command

unix> tar xvf lab1-handout.tar

This will cause a number of files to be unpacked in the directory. The only file you will be modifying
and turning in is bits.c.

The bits.c file contains a skeleton for each of the 11 programming puzzles. Your assignment is to
complete each function skeleton using only straightline code for the integer puzzles (i.e., no loops
or conditionals) and a limited number of C arithmetic and logical operators. Specifically, you are
only allowed to use the following eight operators:

1

http://cs.carleton.edu/faculty/awb/cs208/w20/lab1-handout.tar


! ~ & ^ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants
longer than 8 bits. See the comments in bits.c for detailed rules and a discussion of the desired
coding style.

4 The Puzzles

This section describes the puzzles that you will be solving in bits.c.

Table 1 lists the puzzles in rought order of difficulty from easiest to hardest. The “Rating” field
gives the difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the
maximum number of operators you are allowed to use to implement each function. See the comments
in bits.c for more details on the desired behavior of the functions. You may also refer to the test
functions in tests.c. These are used as reference functions to express the correct behavior of your
functions, although they don’t satisfy the coding rules for your functions.

Name Description Rating Max ops

bitXor(x,y) x ^ y using only & and ~. 2 14
isTmax(x) True only if x is largest two’s comp. integer. 2 10
allOddBits(x) True only if all odd-numbered bits in x set to 1. 3 12
sign(x) Return 1 if positive, 0 if zero, and -1 if negative. 3 10
isAsciDigit(x) True if 0x30 ≤ x ≤ 0x39. 3 15
isLessOrEqual(x, y) True if x ≤ y, false otherwise 3 24
logicalNeg(x) Compute !x without using ! operator. 3 12
greatestBitPos(x) Return mask for position of most sig. 1 bit in x. 4 70
floatScale2(uf) Return bit-level equiv. of 2*f for f.p. arg. f. 3 30
floatFloat2Int(uf) Return bit-level equiv. of (int)f for f.p. arg. f. 3 30
floatPower2(x) Return bit-level equiv. of 2.0^x for integer x. 3 30

Table 1: Datalab puzzles. For the floating point puzzles, value f is the floating-point number having
the same bit representation as the unsigned integer uf.

For the floating-point puzzles, you will implement some common single-precision floating-point
operations. For these puzzles, you are allowed to use standard control structures (conditionals,
loops), and you may use both int and unsigned data types, including arbitrary unsigned and
integer constants. You may not use any unions, structs, or arrays. Most significantly, you may not
use any floating point data types, operations, or constants. Instead, any floating-point operand will
be passed to the function as having type unsigned, and any returned floating-point value will be
of type unsigned. Your code should perform the bit manipulations that implement the specified
floating point operations.

The included program fshow helps you understand the structure of floating point numbers. To
compile fshow, switch to the handout directory and type:

2



unix> make

You can use fshow to see what an arbitrary pattern represents as a floating-point number:

unix> ./fshow 2080374784

Floating point value 2.658455992e+36

Bit Representation 0x7c000000, sign = 0, exponent = f8, fraction = 000000

Normalized. 1.0000000000 X 2^(121)

You can also give fshow hexadecimal and floating point values, and it will decipher their bit struc-
ture.

5 Evaluation

Your score will be computed out of a maximum of 60 points based on the following distribution:

32 Correctness points.

22 Performance points.

3 Style points.

3 points for submitting feedback.txt.

Correctness points. The puzzles you must solve have been given a difficulty rating between 2 and
4, such that their weighted sum totals to 32. We will evaluate your functions using the btest
program, which is described in the next section. You will get full credit for a puzzle if it passes all
of the tests performed by btest, and no credit otherwise.

Performance points. Our main concern at this point in the course is that you can get the right
answer. However, we want to instill in you a sense of keeping things as short and simple as you can.
Furthermore, some of the puzzles can be solved by brute force, but we want you to be more clever.
Thus, for each function we’ve established a maximum number of operators that you are allowed to
use for each function. This limit is very generous and is designed only to catch egregiously inefficient
solutions. You will receive two points for each correct function that satisfies the operator limit.

Style points. Finally, we’ve reserved 3 points for a subjective evaluation of the style of your solutions
and your commenting. Your solutions should be as clean and straightforward as possible. Your
comments should be informative, but they need not be extensive.

Autograding your work

We have included some autograding tools in the handout directory — btest, dlc, and driver.pl
— to help you check the correctness of your work.

3



• btest: This program checks the functional correctness of the functions in bits.c. To build
and use it, type the following two commands:

unix> make

unix> ./btest

Notice that you must rebuild btest each time you modify your bits.c file.

You’ll find it helpful to work through the functions one at a time, testing each one as you go.
You can use the -f flag to instruct btest to test only a single function:

unix> ./btest -f bitXor

You can feed it specific function arguments using the option flags -1, -2, and -3:

unix> ./btest -f bitXor -1 4 -2 5

Check the file README for documentation on running the btest program.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you
can use to check for compliance with the coding rules for each puzzle. The typical usage is:

unix> ./dlc bits.c

The program runs silently unless it detects a problem, such as an illegal operator, too many
operators, or non-straightline code in the integer puzzles. Running with the -e switch:

unix> ./dlc -e bits.c

causes dlc to print counts of the number of operators used by each function. Type ./dlc
-help for a list of command line options.

• driver.pl: This is a driver program that uses btest and dlc to compute the correctness
and performance points for your solution. It takes no arguments:

unix> ./driver.pl

We will use driver.pl to evaluate your solution.

6 What to Turn In

Create a lab1 directory in your COURSES Hand-In and copy bits.c and feedback.txt there.

Remember to include the following in your feedback.txt:

• How many hours you spent outside of class on this homework.

• The difficulty of this homework: too easy, easy, moderate, challenging, or too hard.

• What you learned on this homework (very briefly). Rate the educational value relative to the
time invested from 1 (low) to 5 (high).

4



7 Advice

• Don’t include the <stdio.h> header file in your bits.c file, as it confuses dlc and results in
some non-intuitive error messages. You will still be able to use printf in your bits.c file for
debugging without including the <stdio.h> header, although gcc will print a warning that
you can ignore.

• The dlc program enforces a stricter and older form of C declarations than gcc enforces. In
particular, any declaration must appear in a block (what you enclose in curly braces) before
any statement that is not a declaration. For example, it will complain about the following
code:

int foo(int x)

{

int a = x;

a *= 3; /* Statement that is not a declaration */

int b = a; /* ERROR: Declaration not allowed here */

}

Instead, you must declare all your variables first, like this:

int foo(int x) {

int a = x;

int b;

a *= 3;

b = a;

return b+2

}

• The dlc checker does not accept the 0b prefix for numbers in binary notation (e.g., 0b11110000).
Do not use it. Use decimal (e.g., 240) or hexadecimal (0xf0) notation only. The included
ishow tool lets you display integer representations and conversions. It takes hex or decimal
input.

unix> ./ishow 0x27

Hex = 0x00000027,Signed = 39,Unsigned = 39

8 The “Beat the Prof” Contest

For fun, we’re offering an optional “Beat the Prof” contest that allows you to compete with other
students and the instructor to develop the most efficient puzzles. The goal is to solve each Data Lab
puzzle using the fewest number of operators. Students who match or beat the instructor’s operator
count for each puzzle are winners!

To submit your entry to the contest, type:

5



unix> ./driver.pl -u ‘‘Your Nickname’’

Nicknames are limited to 35 characters and can contain alphanumerics, apostrophes, commas,
periods, dashes, underscores, and ampersands. You can submit as often as you like. Your most
recent submission will appear on a real-time scoreboard, identified only by your nickname. You can
view the scoreboard by pointing your browser at

http://awb66333.mathcs.carleton.edu:8080

6


	Introduction
	Logistics
	Handout Instructions
	The Puzzles
	Evaluation
	What to Turn In
	Advice
	The ``Beat the Prof'' Contest

