1.2

1.2 Purpose of Database Systems 5

dictions such as likelihood of paying back a loan, or clicking on an advertisement,
which are then used to make the business decision.

As another example, manufacturers and retailers need to make decisions on
what items to manufacture or order in what quantities; these decisions are driven
significantly by techniques for analyzing past data, and predicting trends. The cost
of making wrong decisions can be very high, and organizations are therefore willing
to invest a lot of money to gather or purchase required data, and build systems that
can use the data to make accurate predictions.

The field of data mining combines knowledge-discovery techniques invented by
artificial intelligence researchers and statistical analysts with efficient implemen-
tation techniques that enable them to be used on extremely large databases.

Purpose of Database Systems

To understand the purpose of database systems, consider part of a university organiza-
tion that, among other data, keeps information about all instructors, students, depart-
ments, and course offerings. One way to keep the information on a computer is to store
it in operating-system files. To allow users to manipulate the information, the system
has a number of application programs that manipulate the files, including programs to:

* Add new students, instructors, and courses.
* Register students for courses and generate class rosters.

* Assign grades to students, compute grade point averages (GPA), and generate tran-
scripts.

Programmers develop these application programs to meet the needs of the university.

New application programs are added to the system as the need arises. For exam-
ple, suppose that a university decides to create a new major. As a result, the university
creates a new department and creates new permanent files (or adds information to
existing files) to record information about all the instructors in the department, stu-
dents in that major, course offerings, degree requirements, and so on. The university
may have to write new application programs to deal with rules specific to the new ma-
jor. New application programs may also have to be written to handle new rules in the
university. Thus, as time goes by, the system acquires more files and more application
programs.

This typical file-processing system is supported by a conventional operating system.
The system stores permanent records in various files, and it needs different application
programs to extract records from, and add records to, the appropriate files.

Keeping organizational information in a file-processing system has a number of
major disadvantages:



Chapter 1  Introduction

* Data redundancy and inconsistency. Since different programmers create the files
and application programs over a long period, the various files are likely to have
different structures, and the programs may be written in several programming lan-
guages. Moreover, the same information may be duplicated in several places (files).
For example, if a student has a double major (say, music and mathematics), the
address and telephone number of that student may appear in a file that consists of
student records of students in the Music department and in a file that consists of
student records of students in the Mathematics department. This redundancy leads
to higher storage and access cost. In addition, it may lead to data inconsistency;
that is, the various copies of the same data may no longer agree. For example, a
changed student address may be reflected in the Music department records but
not elsewhere in the system.

o Difficulty in accessing data. Suppose that one of the university clerks needs to
find out the names of all students who live within a particular postal-code area.
The clerk asks the data-processing department to generate such a list. Because
the designers of the original system did not anticipate this request, there is no
application program on hand to meet it. There is, however, an application program
to generate the list of a// students. The university clerk now has two choices: either
obtain the list of all students and extract the needed information manually or ask
a programmer to write the necessary application program. Both alternatives are
obviously unsatisfactory. Suppose that such a program is written and that, several
days later, the same clerk needs to trim that list to include only those students who
have taken at least 60 credit hours. As expected, a program to generate such a list
does not exist. Again, the clerk has the preceding two options, neither of which is
satisfactory.

The point here is that conventional file-processing environments do not allow
needed data to be retrieved in a convenient and efficient manner. More responsive
data-retrieval systems are required for general use.

 Data isolation. Because data are scattered in various files, and files may be in dif-
ferent formats, writing new application programs to retrieve the appropriate data
is difficuit.

* Integrity problems. The data values stored in the database must satisfy certain types
of consistency constraints. Suppose the university maintains an account for each
department, and records the balance amount in each account. Suppose also that
the university requires that the account balance of a department may never fall
below zero. Developers enforce these constraints in the system by adding appro-
priate code in the various application programs. However, when new constraints
are added, it is difficult to change the programs to enforce them. The problem is
compounded when constraints involve several data items from different files.

* Atomicity problems. A computer system, like any other device, is subject to failure.
In many applications, it is crucial that, if a failure occurs, the data be restored to the



1.2 Purpose of Database Systems 7

consistent state that existed prior to the failure. Consider a banking system with a
program to transfer $500 from account 4 to account B. If a system failure occurs
during the execution of the program, it is possible that the $500 was removed
from the balance of account A but was not credited to the balance of account
B, resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur. That
is, the funds transfer must be atomic—it must happen in its entirety or not at all. It
is difficult to ensure atomicity in a conventional file-processing system.

Concurrent-access anomalies. For the sake of overall performance of the system
and faster response, many systems allow multiple users to update the data simulta-
neously. Indeed, today, the largest internet retailers may have millions of accesses
per day to their data by shoppers. In such an environment, interaction of concur-
rent updates is possible and may result in inconsistent data. Consider account A,
with a balance of $10,000. If two bank clerks debit the account balance (by say
$500 and $100, respectively) of account 4 at almost exactly the same time, the re-
sult of the concurrent executions may leave the account balance in an incorrect (or
inconsistent) state. Suppose that the programs executing on behalf of each with-
drawal read the old balance, reduce that value by the amount being withdrawn, and
write the result back. If the two programs run concurrently, they may both read
the value $10,000, and write back $9500 and $9900, respectively. Depending on
which one writes the value last, the balance of account 4 may contain either $9500
or $9900, rather than the correct value of $9400. To guard against this possibility,
the system must maintain some form of supervision. But supervision is difficult
to provide because data may be accessed by many different application programs
that have not been coordinated previously.

As another example, suppose a registration program maintains a count of
students registered for a course in order to enforce limits on the number of students
registered. When a student registers, the program reads the current count for the
courses, verifies that the count is not already at the limit, adds one to the count, and
stores the count back in the database. Suppose two students register concurrently,
with the count at 39. The two program executions may both read the value 39, and
both would then write back 40, leading to an incorrect increase of only 1, even
though two students successfully registered for the course and the count should
be 41. Furthermore, suppose the course registration limit was 40; in the above
case both students would be able to register, leading to a violation of the limit of
40 students.

Security problems. Not every user of the database system should be able to access
all the data. For example, in a university, payroll personnel need to see only that
part of the database that has financial information. They do not need access to
information about academic records. But since application programs are added to
the file-processing system in an ad hoc manner, enforcing such security constraints
is difficult.



8

1.3

Chapter 1  Introduction

These difficulties, among others, prompted both the initial development of
database systems and the transition of file-based applications to database systems, back
in the 1960s and 1970s.

In what follows, we shall see the concepts and algorithms that enable database
systems to solve the problems with file-processing systems. In most of this book, we use
a university organization as a running example of a typical data-processing application.

View of Data

A database system is a collection of interrelated data and a set of programs that allow
users to access and modify these data. A major purpose of a database system is to
provide users with an abstract view of the data. That is, the system hides certain details
of how the data are stored and maintained.

1.3.1 Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools
for describing data, data relationships, data semantics, and consistency constraints.

There are a number of different data models that we shall cover in the text. The
data models can be classified into four different categories:

 Relational Model. The relational model uses a collection of tables to represent both
data and the relationships among those data. Each table has multiple columns, and
each column has a unique name. Tables are also known as relations. The relational
model is an example of a record-based model. Record-based models are so named
because the database is structured in fixed-format records of several types. Each
table contains records of a particular type. Each record type defines a fixed number
of fields, or attributes. The columns of the table correspond to the attributes of the
record type. The relational data model is the most widely used data model, and
a vast majority of current database systems are based on the relational model.
Chapter 2 and Chapter 7 cover the relational model in detail.

* Entity-Relationship Model. The entity-relationship (E-R) data model uses a collec-
tion of basic objects, called entities, and relationships among these objects. An en-
tity is a “thing” or “object” in the real world that is distinguishable from other
objects. The entity-relationship model is widely used in database design. Chapter
6 explores it in detail.

e Semi-structured Data Model. The semi-structured data model permits the specifi-
cation of data where individual data items of the same type may have different
sets of attributes. This is in contrast to the data models mentioned earlier, where
every data item of a particular type must have the same set of attributes. JSON and
Extensible Markup Language (XML) are widely used semi-structured data represen-
tations. Semi-structured data models are explored in detail in Chapter 3.



