1.9 History of Database Systems 25

* Schema and physical-organization modification. The DBA carries out changes to the
schema and physical organization to reflect the changing needs of the organiza-
tion, or to alter the physical organization to improve performance.

* Granting of authorization for data access. By granting different types of authoriza-
tion, the database administrator can regulate which parts of the database various
users can access. The authorization information is kept in a special system struc-
ture that the database system consults whenever a user tries to access the data in
the system.

* Routine maintenance. Examples of the database administrator’s routine mainte-
nance activities are:

° Periodically backing up the database onto remote servers, to prevent loss of
data in case of disasters such as flooding.

° Ensuring that enough free disk space is available for normal operations, and
upgrading disk space as required.

° Monitoring jobs running on the database and ensuring that performance is not
degraded by very expensive tasks submitted by some users.

History of Database Systems

Information processing drives the growth of computers, as it has from the earliest days
of commercial computers. In fact, automation of data processing tasks predates com-
puters. Punched cards, invented by Herman Hollerith, were used at the very beginning
of the twentieth century to record U.S. census data, and mechanical systems were used
to process the cards and tabulate results. Punched cards were later widely used as a
means of entering data into computers.

Techniques for data storage and processing have evolved over the years:

* 1950s and early 1960s: Magnetic tapes were developed for data storage. Data-
processing tasks such as payroll were automated, with data stored on tapes. Pro-
cessing of data consisted of reading data from one or more tapes and writing data
to a new tape. Data could also be input from punched card decks and output
to printers. For example, salary raises were processed by entering the raises on
punched cards and reading the punched card deck in synchronization with a tape
containing the master salary details. The records had to be in the same sorted or-
der. The salary raises would be added to the salary read from the master tape and
written to a new tape; the new tape would become the new master tape.

Tapes (and card decks) could be read only sequentially, and data sizes were
much larger than main memory; thus, data-processing programs were forced to



26

Chapter 1 Introduction

process data in a particular order by reading and merging data from tapes and
card decks.

Late 1960s and early 1970s: Widespread use of hard disks in the late 1960s changed
the scenario for data processing greatly, since hard disks allowed direct access to
data. The position of data on disk was immaterial, since any location on disk could
be accessed in just tens of milliseconds. Data were thus freed from the tyranny of
sequentiality. With the advent of disks, the network and hierarchical data models
were developed, which allowed data structures such as lists and trees to be stored
on disk. Programmers could construct and manipulate these data structures.

A landmark paper by Edgar Codd in 1970 defined the relational model and non-
procedural ways of querying data in the relational model, and relational databases
were born. The simplicity of the relational model and the possibility of hiding im-
plementation details completely from the programmer were enticing indeed. Codd
later won the prestigious Association of Computing Machinery Turing Award for
his work.

Late 1970s and 1980s: Although academically interesting, the relational model was
not used in practice initially because of its perceived performance disadvantages;
relational databases could not match the performance of existing network and
hierarchical databases. That changed with System R, a groundbreaking project
at IBM Research that developed techniques for the construction of an efficient
relational database system. The fully functional System R prototype led to IBM’s
first relational database product, SQL/DS. At the same time, the Ingres system was
being developed at the University of California at Berkeley. It led to a commercial
product of the same name. Also around this time, the first version of Oracle was
released. Initial commercial relational database systems, such as IBM DB2, Oracle,
Ingres, and DEC Rdb, played a major role in advancing techniques for efficient
processing of declarative queries.

By the early 1980s, relational databases had become competitive with network
and hierarchical database systems even in the area of performance. Relational
databases were so easy to use that they eventually replaced network and hierar-
chical databases. Programmers using those older models were forced to deal with
many low-level implementation details, and they had to code their queries in a
procedural fashion. Most importantly, they had to keep efficiency in mind when
designing their programs, which involved a lot of effort. In contrast, in a rela-
tional database, almost all these low-level tasks are carried out automatically by the
database system, leaving the programmer free to work at a logical level. Since at-
taining dominance in the 1980s, the relational model has reigned supreme among
data models.

The 1980s also saw much research on parallel and distributed databases, as
well as initial work on object-oriented databases.



1.9 History of Database Systems 27

* 1990s: The SQL language was designed primarily for decision support applica-
tions, which are query-intensive, yet the mainstay of databases in the 1980s was
transaction-processing applications, which are update-intensive.

In the early 1990s, decision support and querying re-emerged as a major ap-
plication area for databases. Tools for analyzing large amounts of data saw a large
growth in usage. Many database vendors introduced parallel database products in
this period. Database vendors also began to add object-relational support to their
databases.

The major event of the 1990s was the explosive growth of the World Wide
Web. Databases were deployed much more extensively than ever before. Database
systems now had to support very high transaction-processing rates, as well as very
high reliability and 24 X 7 availability (availability 24 hours a day, 7 days a week,
meaning no downtime for scheduled maintenance activities). Database systems
also had to support web interfaces to data.

® 2000s: The types of data stored in database systems evolved rapidly during this
period. Semi-structured data became increasingly important. XML emerged as a
data-exchange standard. JSON, a more compact data-exchange format well suited
for storing objects from JavaScript or other programming languages subsequently
grew increasingly important. Increasingly, such data were stored in relational
database systems as support for the XML and JSON formats was added to the
major commercial systems. Spatial data (that is, data that include geographic in-
formation) saw widespread use in navigation systems and advanced applications.
Database systems added support for such data.

Open-source database systems, notably PostgreSQL and MySQL saw increased
use. “Auto-admin” features were added to database systems in order to allow au-
tomatic reconfiguration to adapt to changing workloads. This helped reduce the
human workload in administering a database.

Social network platforms grew at a rapid pace, creating a need to manage data
about connections between people and their posted data, that did not fit well into
a tabular row-and-column format. This led to the development of graph databases.

In the latter part of the decade, the use of data analytics and data mining in
enterprises became ubiquitous. Database systems were developed specifically to
serve this market. These systems featured physical data organizations suitable for
analytic processing, such as “column-stores,” in which tables are stored by column
rather than the traditional row-oriented storage of the major commercial database
systems.

The huge volumes of data, as well as the fact that much of the data used for
analytics was textual or semi-structured, led to the development of programming
frameworks, such as map-reduce, to facilitate application programmers’ use of par-
allelism in analyzing data. In time, support for these features migrated into tradi-
tional database systems. Even in the late 2010s, debate continued in the database



28

Chapter 1 Introduction

research community over the relative merits of a single database system serving
both traditional transaction processing applications and the newer data-analysis
applications versus maintaining separate systems for these roles.

The variety of new data-intensive applications and the need for rapid devel-
opment, particularly by startup firms, led to “NoSQL” systems that provide a
lightweight form of data management. The name was derived from those systems’
lack of support for the ubiquitous database query language SQL, though the name
is now often viewed as meaning “not only SQL.” The lack of a high-level query lan-
guage based on the relational model gave programmers greater flexibility to work
with new types of data. The lack of traditional database systems’ support for strict
data consistency provided more flexibility in an application’s use of distributed
data stores. The NoSQL model of “eventual consistency” allowed for distributed
copies of data to be inconsistent as long they would eventually converge in the
absence of further updates.

2010s: The limitations of NoSQL systems, such as lack of support for consistency,
and lack of support for declarative querying, were found acceptable by many ap-
plications (e.g., social networks), in return for the benefits they provided such as
scalability and availability. However, by the early 2010s it was clear that the lim-
itations made life significantly more complicated for programmers and database
administrators. As a result, these systems evolved to provide features to support
stricter notions of consistency, while continuing to support high scalability and
availability. Additionally, these systems increasingly support higher levels of ab-
straction to avoid the need for programmers to have to reimplement features that
are standard in a traditional database system.

Enterprises are increasingly outsourcing the storage and management of their
data. Rather than maintaining in-house systems and expertise, enterprises may
store their data in “cloud” services that host data for various clients in multiple,
widely distributed server farms. Data are delivered to users via web-based services.
Other enterprises are outsourcing not only the storage of their data but also whole
applications. In such cases, termed “software as a service,” the vendor not only
stores the data for an enterprise but also runs (and maintains) the application
software. These trends result in significant savings in costs, but they create new
issues not only in responsibility for security breaches, but also in data ownership,
particularly in cases where a government requests access to data.

The huge influence of data and data analytics in daily life has made the man-
agement of data a frequent aspect of the news. There is an unresolved tradeoff
between an individual’s right of privacy and society’s need to know. Various na-
tional governments have put regulations on privacy in place. High-profile security
breaches have created a public awareness of the challenges in cybersecurity and
the risks of storing data.



