
Lecture #12: Query Processing I
15-445/645 Database Systems (Fall 2020)

https://15445.courses.cs.cmu.edu/fall2020/
Carnegie Mellon University

Prof. Andy Pavlo

1 Query Plan
The DBMS converts a SQL statement into a query plan. Operators in the query plan are arranged in a tree.
Data flows from the leaves of this tree towards the root. The output of the root node in the tree is the result
of the query. Typically operators are binary (1–2 children). The same query plan can be executed in multiple
ways. Most DBMSs will want to use an index scan as much as possible.

2 Processing Models
A DBMS processing model defines how the system executes a query plan. It specifies things like the
direction in which the query plan is read in as well as what kind of data is passed between operators along the
way. There are different models of processing models that have various trade-offs for different workloads.

These models can also be implemented to invoke the operators either from top-to-bottom or from bottom-
to-top. Although the top-to-bottom approach is much more common, the bottom-to-top approach can allow
for tighter control of caches/registers in pipelines.

Iterator Model
The iterator model, also known as the Volcano or Pipeline model, is the most common processing model
and is used by almost every (row-based) DBMS. The iterator model allows for pipelining where the DBMS
can process a tuple through as many operators as possible before having to retrieve the next tuple. The series
of tasks performed for a given tuple in the query plan is called a pipeline.

The iterator model works by implementing a next function for every operator in the database. Each node
in the query plan calls next on its children until the leaf nodes are reached, which start emitting tuples up
for processing. Each tuple is then processed up the plan as far as possible before the next tuple is retrieved.
This is useful in disk-based systems because it allows us to fully use each tuple in memory before the next
tuple or page is accessed. A sample diagram of the iterator model is shown in Figure 1.

Every query plan operator implements a next function as follows:

• On each call to next, the operator returns either a single tuple or a null marker if there are no more
tuples.

• The operator implements a loop that calls next on its children to retrieve their tuples and then process
them. In this way, calling next on a parent calls next on its children. In response, the child node will
return the next tuple that the parent must process.

Some operators will block until children emit all of their tuples (joins, subqueries, order by). These are
known as pipeline breakers.

Output control works easily with this approach (LIMIT) because an operator can stop invoking next on its
children operators once it has all the tuples that it requires.

https://15445.courses.cs.cmu.edu/fall2020/
https://15445.courses.cs.cmu.edu/fall2020/
http://www.cs.cmu.edu/~pavlo/

Fall 2020 – Lecture #12 Query Processing I

SELECT R.id, S.cdate

FROM R JOIN S

ON R.id = S.id

WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

for t in R:
emit(t)

for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): emit(t1⨝t2)

for t in child.Next():
emit(projection(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

1

2

3 5

4

Figure 1: Iterator Model Example – Pseudo code of the different next functions for
each of the operators. The next functions are essentially for loops iterating over the
output of their child operator. For example, the root node calls next on its child, the
join operator, which is an access method that loops over the relation R and emits a
tuple up that is then operated on. After all tuples have been processed, a null pointer is
sent that lets the parent nodes know to move on.

Materialization Model
The materialization model is a specialization of the iterator model where each operator processes its input
all at once and then emits its output all at once. Instead of having a next function that returns a single tuple,
each operator returns all of its tuples every time it is reached. To avoid scanning too many tuples, the DBMS
can propagate down information about how many tuples are needed to subsequent operators. The operator
“materializes” its output as a single result. The output can be either a whole tuple (NSM) or a subset of
columns (DSM). A diagram of the materialization model is shown in Figure 2.

Every query plan operator implements an output function:

• The operator processes all the tuples from its children at once.
• The return result of this function is all the tuples that operator will ever emit. When the operator

finishes executing, the DBMS never needs to return to it to retrieve more data.

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:
out.add(t)

return out

out = []
for t1 in left.Output():
buildHashTable(t1)

for t2 in right.Output():
if probe(t2): out.add(t1⨝t2)

return out

out = []
for t in child.Output():
out.add(projection(t))

return out

out = []
for t in child.Output():
if evalPred(t): out.add(t)

return out

out = []
for t in S:
out.add(t)

return out

1

2

3 5

4

SELECT R.id, S.cdate

FROM R JOIN S

ON R.id = S.id

WHERE S.value > 100

Figure 2: Materialization Model Example – Starting at the root, the
child.Output() function is called, which invokes the operators below, which returns
all tuples back up.

15-445/645 Database Systems
Page 2 of 6

https://15445.courses.cs.cmu.edu/fall2020/

Fall 2020 – Lecture #12 Query Processing I

This approach is better for OLTP workloads because queries typically only access a small number of tuples
at a time. Thus, there are fewer function calls to retrieve tuples. The materialization model is not suited
for OLAP queries with large intermediate results because the DBMS may have to spill those results to disk
between operators.

Vectorization Model
Like the iterator model, the vectorization model has each operator implements a next function. However,
each operator emits a batch (i.e., vector) of data instead of a single tuple. The operator’s internal loop
implementation is optimized for processing batches of data instead of a single item at a time. The size of
the batch can vary based on hardware or query properties. See Figure 3 for an example of the vectorization
model.

R S

R.id=S.id

value>100

R.id, S.value

⨝
s

p

out = []
for t in R:
out.add(t)
if |out|>n: emit(out)

out = []
for t1 in left.Next():
buildHashTable(t1)

for t2 in right.Next():
if probe(t2): out.add(t1⨝t2)
if |out|>n: emit(out)

out = []
for t in child.Next():
out.add(projection(t))
if |out|>n: emit(out)

out = []
for t in child.Next():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

1

2

3 out = []
for t in S:
out.add(t)
if |out|>n: emit(out)

5

4

SELECT R.id, S.cdate

FROM R JOIN S

ON R.id = S.id

WHERE S.value > 100

Figure 3: Vectorization Model Example – The vectorization model is very similar to
the iterator model except at every operator, an output buffer is compared to the desired
emission size. If the buffer is larger, then a tuple batch is sent up.

The vectorization model approach is ideal for OLAP queries that have to scan a large number of tuples
because there are fewer invocations of the next function.

3 Access Methods
An access method is how the DBMS accesses the data stored in a table. In general, there are two approaches
to access models; either data is read from an index or from a table with a sequential scan. The multi-index
is an extension of the index scan that allows for multiple indexes to be accessed at once.

Sequential Scan
The sequential scan operator iterates over every page in the table and retrieves it from the buffer pool. As
the scan iterates over all the tuples on each page, it evaluates the predicate to decide whether or not to emit
the tuple to the next operator.

The DBMS maintains an internal cursor that tracks the last page/slot that it examined.

There are a number of optimizations available to help make sequential scans faster:

• Prefetching: Fetch the next few pages in advance so that the DBMS does not have to block when
accessing each page.

• Parallelization: Execute the scan using multiple threads/processes in parallel.

15-445/645 Database Systems
Page 3 of 6

https://15445.courses.cs.cmu.edu/fall2020/

Fall 2020 – Lecture #12 Query Processing I

• Buffer Pool Bypass: The scan operator stores pages that it fetches from disk in its local memory
instead of the buffer pool in order to avoid sequential flooding.

• Zone Map: Pre-compute aggregations for each tuple attribute in a page. The DBMS can then decide
whether it needs to access a page by checking its Zone Map first. The Zone Maps for each page
are stored in separate pages and there are typically multiple entries in each Zone Map page. Thus,
it is possible to reduce the total number of pages examined in a sequential scan. See figure 4 for an
example of a Zone Map.

• Late Materialization: Each operator passes the minimal amount of information needed to the next
operator (e.g., record id, offset to record in column). This is only useful in column-store systems (i.e.,
DSM).

• Heap Clustering: Tuples are stored in the heap pages using an order specified by a clustering index.

Zone Map

val
100
400
280
1400

type
MIN
MAX
AVG
SUM

5COUNT

Original Data

val
100
200
300
400
400

SELECT * FROM table
WHERE val > 600

Figure 4: Zone Map Example – The zone map stores pre-computed aggregates for
values in a page. In the example above, the select query realizes from the zone map
that the max value in the original data is only 400. Then, instead of having to iterate
through every tuple in the page, the query can avoid accessing the page at all since
none of the values will be greater than 600.

Index Scan
The goal of an index scan is to identify an index in the table that will quickly allow the user to find the data
he or she needs by avoiding useless operations.

SELECT * FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'

There are 99 people
under the age of 30 but
only 2 people in the CS
department.

Scenario #1
There are 99 people in
the CS department but
only 2 people under the
age of 30.

Scenario #2

Figure 5: Index Scan Example – Consider a single table with 100 tuples and two
indexes: age and department. In the first scenario, it is better to use the department
index in the scan because it only has two tuples to match. Choosing the age index
would not be much better than a simple sequential scan. In the second scenario, the
age index would eliminate more unnecessary scans and is the optimal choice.

There are many factors involved in which index the DBMS decides to choose, such as:

15-445/645 Database Systems
Page 4 of 6

https://15445.courses.cs.cmu.edu/fall2020/

Fall 2020 – Lecture #12 Query Processing I

• What attributes the index contains
• What attributes the query references
• The attribute’s value domain
• Predicate composition
• Whether the index has unique or non-unique keys

A simple example of an index scan is shown in Figure 5.

More advanced DBMSs can support multi-index scans. When using multiple indexes for a query, the DBMS
will compute sets of record IDs using each matching index, combine those sets based on the query’s predi-
cates, and retrieve the records and apply any predicates that may remain. The DBMS can use bitmaps, hash
tables, or Bloom filters to compute record IDs through set intersection.

4 Modification Queries
Operators that modify the database (INSERT, UPDATE, DELETE) are responsible for checking constraints and
updating indexes. For UPDATE/DELETE, child operators pass Record Ids for target tuples and must keep track
of previously seen tuples.

There are two implementation choices on how to handle INSERT operators:

1. Materialize tuples inside of the operator.
2. Operator inserts any tuple passed in from child operators.

Halloween Problem
Halloween Problem is the anomaly where an update operation changes the physical location of a tuple,
which causes a scan operator to visit the tuple multiple times.It can occur on clustered tables or index scans.

Originally discovered by IBM researchers while building System R in 1976.

5 Expression Evaluation
The DBMS represents a WHERE clause as an expression tree (see Figure 6 for an example). The nodes in the
tree represent different expression types.

1

SELECT * FROM S
WHERE B.value = ?+ 1

Attribute(S.value)

Constant(1)

=

+

Parameter(0)

Figure 6: Expression Evaluation Example – A WHERE clause and a diagram of its
corresponding expression.

Some examples of expression types that can be stored in tree nodes:

• Comparisons (=, <, >, !=)
• Conjunction (AND), Disjunction (OR)
• Arithmetic Operators (+, -, *, /, %)

15-445/645 Database Systems
Page 5 of 6

https://15445.courses.cs.cmu.edu/fall2020/

Fall 2020 – Lecture #12 Query Processing I

• Constant and Parameter Values
• Tuple Attribute References

To evaluate an expression tree at runtime, the DBMS maintains a context handle that contains metadata for
the execution, such as the current tuple, the parameters, and the table schema. The DBMS then walks the
tree to evaluate its operators and produce a result.

Evaluating predicates in this manner is slow because the DBMS must traverse the entire tree and figure out
what to do for each operator. A better approach is to just evaluate the expression directly.

15-445/645 Database Systems
Page 6 of 6

https://15445.courses.cs.cmu.edu/fall2020/

	Query Plan
	Processing Models
	Access Methods
	Modification Queries
	Expression Evaluation

