
Lecture #13: Query Execution II
15-445/645 Database Systems (Fall 2020)

https://15445.courses.cs.cmu.edu/fall2020/
Carnegie Mellon University

Prof. Andy Pavlo

1 Background
Previous discussions of query executions assumed that the queries executed with a single worker (i.e thread).
However, in practice, queries are often executed in parallel with multiple workers.

Parallel execution provides a number of key benefits for DBMSs:

• Increased performance in throughput (more queries per second) and latency (less time per query).
• Increased responsiveness and availability.
• Potentially lower total cost of ownership (TCO). This cost includes both the hardware procurement

and software license, as well as the labor overhead of deploying the DBMS and the energy needed to
run the machines.

There are two types of parallelism that DBMSs support: inter- and intra- query parallelism.

2 Parallel vs Distributed Databases
In both parallel and distributed systems, the database is spread out across multiple “resources” to improve
parallelism. These resources are either computational (e.g., CPU cores, CPU sockets, GPUs, additional
machines) or storage (e.g., disks, memory).

It is important to distinguish between parallel and distributed systems. In a parallel DBMS, resources, or
nodes, are physically close to each other. These nodes communicate with high-speed interconnect. It is
assumed that communication between resources is not only fast, but also cheap and reliable.

In a distributed database, resources a far away from each other; this could mean a database could span racks
or data centers in different parts of the world. As a result, resources communicate using slower interconnect
over a public network. Communication costs between nodes is slower and failures cannot be ignored.

Even though a database may be physically divided over multiple resources, it still appears as a single logical
database instance to the application. Thus, the SQL query for a single-node DBMS should generate the
same result on a parallel or distributed DBMS.

3 Process Models
A DBMS process model defines how the system supports concurrent requests from a multi-user applica-
tion/environment. The DBMS is comprised of more or more workers that are responsible for executing
tasks on behalf of the client and returning the results. An application may send a large request or multiple
requests at the same time that must be divided across different workers.

There are three different process models that a DBMS could adopt: process per worker, process pool, and
thread per worker.

https://15445.courses.cs.cmu.edu/fall2020/
https://15445.courses.cs.cmu.edu/fall2020/
http://www.cs.cmu.edu/~pavlo/


Fall 2020 – Lecture #13 Query Execution II

Dispatcher Worker

1 2

3

4

Figure 1: Process per Worker Model

Worker PoolDispatcher
1

4

2 3
6

5

Figure 2: Process Pool Model

Process per Worker
The first and most basic approach is process per worker. Here, each worker is a separate OS process, and
thus relies on OS scheduler. An application sends a request and opens a connection to the databases system.
Some dispatcher receives the request and forks off a worker to handle this connection. The application now
communicates directly with the worker who is responsible for executing the request that the query wants.
This sequence of events is shown in Figure 1.

This raises the issue of multiple workers on separate processes making numerous copies of the same page.
A solution to maximize memory usage, is to use shared-memory for global data structures so that they can
be used by multiple processes.

An advantage of the process per worker approach is that a process crash doesn’t disrupt the whole system
because each process is forked off.

Process Pool
An extension of the process per worker model is the process pool. Instead of forking off processes for each
connection request, workers are kept in a pool and selected by the dispatcher when a query arrives. Because
the processes exist together in a pool, processes can share queries between themselves, or query parallelism.
A diagram of the process pool model is shown in Figure 2.

Like process per worker, the process pool also relies on the OS scheduler and shared memory.

A drawback to this approach is poor CPU cache locality as the same processes are not guaranteed to be used
between queries.

Thread per Worker
The third and most common model is thread per worker. Instead of having different processes doing dif-
ferent tasks, each database system has only one process with multiple worker threads. In this environment,
the DBMS has full control over the tasks and threads, it can manage it own scheduling. The multi-threaded
model may or may not use a dispatcher thread. A diagram of the thread per worker model is shown in
Figure 3.

Using multi-threaded architecture provides certain advantages. For one, there is less overhead per context

15-445/645 Database Systems
Page 2 of 6

https://15445.courses.cs.cmu.edu/fall2020/


Fall 2020 – Lecture #13 Query Execution II

Worker Threads

3

21

4

Figure 3: Thread per Worker Model

switch. Additionally, a shared model does not have to be maintained. However, the thread per worker model
does not allow for intra-query parallelism.

In conclusion, for each query plan, the DBMS has to decide where, when, and how to execute. Relevant
questions include:

• How many tasks should it use?
• How many CPU cores should it use?
• What CPU core should the tasks execute on?
• Where should a task store its output?

When making decisions regarding query plans, the DBMS always knows more than the OS and should be
prioritized as such.

4 Inter-Query Parallelism
In inter-query parallelism, the DBMS executes different queries are concurrently. Because multiple work-
ers are running requests simultaneously, overall performance is improved. This increases throughput and
reduces latency.

If the queries are read-only, then little coordination is required between queries. However, if multiple queries
are updating the database concurrently, more complicated conflicts arise. These issues are discussed further
in lecture 16.

5 Intra-Query parallelism
In intra-query parallelism, the DBMS executes the operations of a single query in parallel. This decreases
latency for long-running queries.

The organization of intra-query parallelism can be thought of in terms of a producer/consumer paradigm.
Each operator is a producer of data as well as a consumer of data from some operator running below it.

Parallel algorithms exist for every relational operator. DBMSs can either have multiple threads access
centralized data structures or use partitioning to divide work up.

Within intra-query parallelism, there are three types of parallelism: intra-operator, inter-operator, and bushy.
It is of note that these approaches are not mutually exclusive. Part of the DBMSs responsibility is to combine
these techniques in a way that optimizes performance of a given workload.

Intra-Operator Parallelism (Horizontal)
In intra-operator parallelism, query plan’s operators are decomposed into independent instances that per-
form the same function on different subsets of data.

The DBMS inserts an exchange operator into the query plan to coalesce results from children operators. The

15-445/645 Database Systems
Page 3 of 6

https://15445.courses.cs.cmu.edu/fall2020/


Fall 2020 – Lecture #13 Query Execution II

SELECT * FROM A
WHERE A.value > 99

A2A1 A3
1 2 3

s s s

A
svalue>99

Exchange

1 2 3 4 5

Pages

Fragment

Next

Next

Figure 4: Intra-operator Parallelism – The query plan for this select is a sequential
scan on A that is fed into a filter operator. To run this in parallel, the query plan
is divided among different fragments. A given plan fragment is operated on a by a
distinct page. The exchange operator calls Next concurrently on all fragments which
then retrieve data from their respective pages.

exchange operator prevents the DBMS from executing operators above it in the plan until it receives all of
the data from the children. An example of this is shown in Figure 4.

In general, there are three types of exchange operators:

• Gather: Combine the results from multiple workers into a single output stream. This is the most
common type used in parallel DBMSs.

• Repartition: Reorganize multiple input streams across multiple output streams. This allows the
DBMS take inputs that are partitioned one way and then redistribute them in another way.

• Distribute: Split a single input stream into multiple output streams.

Inter-Operator Parallelism (Vertical)
In inter-operator parallelism, the DBMS overlaps operators in order to pipeline data from one stage to the
next without materialization. This is sometimes called pipelined parallelism. See example in Figure 5.

This approach is widely used in stream processing systems, which are systems that continually execute a
query over a stream of input tuples.

Bushy Parallelism
Bushy parallelism is an extension of inter-operator parallelism where workers execute multiple operators
from different segments of a query plan at the same time.

The DBMS still uses exchange operators to combine intermediate results from these segments. An example
is shown in Figure 6.

6 I/O Parallelism
Using additional processes/threads to execute queries in parallel will not improve performance if the disk
is always the main bottleneck. Thus, it is important to be able to split a database across multiple storage
devices.

To get around this, DBMSs use I/O parallelism to split installation across multiple devices. Three ap-

15-445/645 Database Systems
Page 4 of 6

https://15445.courses.cs.cmu.edu/fall2020/


Fall 2020 – Lecture #13 Query Execution II

1 ⨝ for r1 ∊ outer:
for r2 ∊ inner:

emit(r1⨝r2)

2 p for r ∊ incoming:
emit(pr)

A B

⨝
s

p

s

SELECT A.id, B.value
FROM A JOIN B

ON A.id = B.id
WHERE A.value < 99

AND B.value > 100

Figure 5: Inter-operator Parallelism – In the join statement to the left, a single
worker performs the join and then emits the result to another worker that performs the
projection and then emits the result again.

SELECT *
FROM A JOIN B JOIN C JOIN D A

⨝
B

⨝
C D

⨝
Exchange Exchange

Exchange

⨝
3 4

1 2

Figure 6: Bushy Parallelism – To perform a 4-way join on three tables, the query
plan is divided into four fragments as shown. Different portions of the query plan run
at the same time, similarly to inter-operator parallelism.

proaches to I/O parallelism are multi-disk parallelism, database partitioning, and partitioning.

Multi-Disk Parallelism
In multi-disk parallelism, the OS/hardware is configured to store the DBMS’s files across multiple storage
devices. This can be done through storage appliances and RAID configuration. All of the storage setup is
transparent to the DBMS so workers cannot operate on different devices because the DBMS is unaware of
the underlying parallelism.

Database Partitioning
In database partitioning, the database is split up into disjoint subsets that can be assigned to discrete disks.
Some DBMSs allow for specification of the disk location of each individual database. This is easy to do at
the file-system level if the DBMS stores each database in a separate directory. The log file of changes made
is usually shared.

15-445/645 Database Systems
Page 5 of 6

https://15445.courses.cs.cmu.edu/fall2020/


Fall 2020 – Lecture #13 Query Execution II

Logical Partitioning
The idea of logical partitioning is to split single logical table into disjoint physical segments that are stored/-
managed separately. Such partitioning is ideally transparent to the application. That is, the application
should be able to access logical tables without caring how things are stored.

The two approaches to partitioning are vertical and horizontal partitioning.

In vertical partitioning, a table’s attributes are stored in a separate location (like a column store). The tuple
information must be stored in order to reconstruct the original record.

In horizontal partitioning, the tuples of a table are divided into disjoint segments based on some partitioning
keys. There are different ways to decide how to partition (e.g., hash, range, or predicate partitioning). The
efficacy of each approach depends on the queries.

15-445/645 Database Systems
Page 6 of 6

https://15445.courses.cs.cmu.edu/fall2020/

	Background
	Parallel vs Distributed Databases
	Process Models
	Inter-Query Parallelism
	Intra-Query parallelism
	I/O Parallelism

