
©Silberschatz, Korth and Sudarshan19.1Database System Concepts - 7th Edition

Recovery Algorithms

§ Suppose transaction Ti transfers $50 from account A to account B
• Two updates: subtract 50 from A and add 50 to B

§ Transaction Ti requires updates to A and B to be output to the database.
• A failure may occur after one of these modifications have been made

but before both of them are made.
• Modifying the database without ensuring that the transaction will

commit may leave the database in an inconsistent state
• Not modifying the database may result in lost updates if failure occurs

just after transaction commits
§ Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enough
information exists to recover from failures

2. Actions taken after a failure to recover the database contents to a state
that ensures atomicity, consistency and durability

©Silberschatz, Korth and Sudarshan19.2Database System Concepts - 7th Edition

Log-Based Recovery

§ A log is a sequence of log records. The records keep information about
update activities on the database.
• The log is kept on stable storage

§ When transaction Ti starts, it registers itself by writing a
<Ti start> log record

§ Before Ti executes write(X), a log record
<Ti, X, V1, V2>

is written, where V1 is the value of X before the write (the old
value), and V2 is the value to be written to X (the new value).

§ When Ti finishes it last statement, the log record <Ti commit> is written.
§ Two approaches using logs

• Immediate database modification
• Deferred database modification.

©Silberschatz, Korth and Sudarshan19.3Database System Concepts - 7th Edition

Transaction Commit

§ A transaction is said to have committed when its commit log record is
output to stable storage
• All previous log records of the transaction must have been output

already
§ Writes performed by a transaction may still be in the buffer when the

transaction commits, and may be output later

©Silberschatz, Korth and Sudarshan19.4Database System Concepts - 7th Edition

Undo and Redo Operations

§ Undo and Redo of Transactions
• undo(Ti) -- restores the value of all data items updated by Ti to their

old values, going backwards from the last log record for Ti

§ Each time a data item X is restored to its old value V a special log
record <Ti , X, V> is written out

§ When undo of a transaction is complete, a log record
<Ti abort> is written out.

• redo(Ti) -- sets the value of all data items updated by Ti to the new
values, going forward from the first log record for Ti

§ No logging is done in this case

©Silberschatz, Korth and Sudarshan19.5Database System Concepts - 7th Edition

Recovering from Failure

§ When recovering after failure:
• Transaction Ti needs to be undone if the log

§ Contains the record <Ti start>,
§ But does not contain either the record <Ti commit> or <Ti abort>.

• Transaction Ti needs to be redone if the log
§ Contains the records <Ti start>
§ And contains the record <Ti commit> or <Ti abort>

©Silberschatz, Korth and Sudarshan19.6Database System Concepts - 7th Edition

Recovering from Failure (Cont.)

§ Suppose that transaction Ti was undone earlier and the <Ti abort> record
was written to the log, and then a failure occurs,

§ On recovery from failure transaction Ti is redone
• Such a redo redoes all the original actions of transaction Ti including

the steps that restored old values
§ Known as repeating history
§ Seems wasteful, but simplifies recovery greatly

©Silberschatz, Korth and Sudarshan19.7Database System Concepts - 7th Edition

Immediate DB Modification Recovery Example

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000, and log records

<T0, B, 2000>, <T0, A, 1000>, <T0, abort> are written out
(b) redo (T0) and undo (T1): A and B are set to 950 and 2050 and C is restored

to 700. Log records <T1, C, 700>, <T1, abort> are written out.
(c) redo (T0) and redo (T1): A and B are set to 950 and 2050

respectively. Then C is set to 600

©Silberschatz, Korth and Sudarshan19.8Database System Concepts - 7th Edition

Checkpoints

§ Redoing/undoing all transactions recorded in the log can be very slow
• Processing the entire log is time-consuming if the system has run for a

long time
• We might unnecessarily redo transactions which have already output

their updates to the database.
§ Streamline recovery procedure by periodically performing checkpointing

1. Output all log records currently residing in main memory onto stable
storage.

2. Output all modified buffer blocks to the disk.
3. Write a log record < checkpoint L> onto stable storage where L is a

list of all transactions active at the time of checkpoint.
4. All updates are stopped while doing checkpointing

©Silberschatz, Korth and Sudarshan19.9Database System Concepts - 7th Edition

Checkpoints (Cont.)

§ During recovery we need to consider only the most recent transaction Ti
that started before the checkpoint, and transactions that started after Ti.
• Scan backwards from end of log to find the most recent <checkpoint

L> record
• Only transactions that are in L or started after the checkpoint need to

be redone or undone
• Transactions that committed or aborted before the checkpoint

already have all their updates output to stable storage.
§ Some earlier part of the log may be needed for undo operations

• Continue scanning backwards till a record <Ti start> is found for
every transaction Ti in L.

• Parts of log prior to earliest <Ti start> record above are not needed
for recovery, and can be erased whenever desired.

©Silberschatz, Korth and Sudarshan19.10Database System Concepts - 7th Edition

Example of Checkpoints

§ T1 can be ignored (updates already output to disk due to
checkpoint)

§ T2 and T3 redone.
§ T4 undone

©Silberschatz, Korth and Sudarshan19.11Database System Concepts - 7th Edition

Recovery Algorithm

§ Logging (during normal operation):
• <Ti start> at transaction start
• <Ti, Xj, V1, V2> for each update, and
• <Ti commit> at transaction end

§ Transaction rollback (during normal operation)
• Let Ti be the transaction to be rolled back
• Scan log backwards from the end, and for each log record of Ti of the

form <Ti, Xj, V1, V2>
§ Perform the undo by writing V1 to Xj,
§ Write a log record <Ti , Xj, V1>

• such log records are called compensation log records
• Once the record <Ti start> is found stop the scan and write the log

record <Ti abort>

©Silberschatz, Korth and Sudarshan19.12Database System Concepts - 7th Edition

Recovery Algorithm (Cont.)

§ Recovery from failure: Two phases
• Redo phase: replay updates of all transactions, whether they

committed, aborted, or are incomplete
• Undo phase: undo all incomplete transactions

§ Redo phase:
1. Find last <checkpoint L> record, and set undo-list to L.
2. Scan forward from above <checkpoint L> record

1. Whenever a record <Ti, Xj, V1, V2> or <Ti, Xj, V2> is found, redo
it by writing V2 to Xj

2. Whenever a log record <Ti start> is found, add Ti to undo-list
3. Whenever a log record <Ti commit> or <Ti abort> is found,

remove Ti from undo-list

©Silberschatz, Korth and Sudarshan19.13Database System Concepts - 7th Edition

Recovery Algorithm (Cont.)

§ Undo phase:
1. Scan log backwards from end

1. Whenever a log record <Ti, Xj, V1, V2> is found where Ti is in
undo-list perform same actions as for transaction rollback:
1. perform undo by writing V1 to Xj.
2. write a log record <Ti , Xj, V1>

2. Whenever a log record <Ti start> is found where Ti is in undo-list,
1. Write a log record <Ti abort>
2. Remove Ti from undo-list

3. Stop when undo-list is empty
1. i.e., <Ti start> has been found for every transaction in undo-list

§ After undo phase completes, normal transaction processing can commence

©Silberschatz, Korth and Sudarshan19.14Database System Concepts - 7th Edition

Example of Recovery

©Silberschatz, Korth and Sudarshan19.15Database System Concepts - 7th Edition

Fuzzy Checkpointing

§ To avoid long interruption of normal processing during checkpointing,
allow updates to happen during checkpointing

§ Fuzzy checkpointing is done as follows:
1. Temporarily stop all updates by transactions
2. Write a <checkpoint L> log record and force log to stable storage
3. Note list M of modified buffer blocks
4. Now permit transactions to proceed with their actions
5. Output to disk all modified buffer blocks in list M

§ blocks should not be updated while being output
§ Follow WAL: all log records pertaining to a block must be output

before the block is output
6. Store a pointer to the checkpoint record in a fixed position

last_checkpoint on disk

©Silberschatz, Korth and Sudarshan19.16Database System Concepts - 7th Edition

Fuzzy Checkpointing (Cont.)

§ When recovering using a fuzzy checkpoint, start scan from the
checkpoint record pointed to by last_checkpoint
• Log records before last_checkpoint have their updates reflected in

database on disk, and need not be redone.
• Incomplete checkpoints, where system had crashed while performing

checkpoint, are handled safely

©Silberschatz, Korth and Sudarshan19.17Database System Concepts - 7th Edition

ARIES

§ ARIES is a state of the art recovery method
• Incorporates numerous optimizations to reduce overheads during

normal processing and to speed up recovery
• The recovery algorithm we studied earlier is modeled after ARIES, but

greatly simplified by removing optimizations
§ Unlike the recovery algorithm described earlier, ARIES

1. Uses log sequence number (LSN) to identify log records
§ Stores LSNs in pages to identify what updates have already been

applied to a database page
2. Physiological redo
3. Dirty page table to avoid unnecessary redos during recovery
4. Fuzzy checkpointing that only records information about dirty pages,

and does not require dirty pages to be written out at checkpoint time
§ More coming up on each of the above …

©Silberschatz, Korth and Sudarshan19.18Database System Concepts - 7th Edition

ARIES Optimizations

§ Physiological redo
• Affected page is physically identified, action within page can be logical

§ Used to reduce logging overheads
• e.g. when a record is deleted and all other records have to be

moved to fill hole
§ Physiological redo can log just the record deletion
§ Physical redo would require logging of old and new values

for much of the page
§ Requires page to be output to disk atomically

• Easy to achieve with hardware RAID, also supported by some
disk systems

• Incomplete page output can be detected by checksum
techniques,
§ But extra actions are required for recovery
§ Treated as a media failure

©Silberschatz, Korth and Sudarshan19.19Database System Concepts - 7th Edition

ARIES Data Structures

§ ARIES uses several data structures
• Log sequence number (LSN) identifies each log record

§ Must be sequentially increasing
§ Typically an offset from beginning of log file to allow fast access

• Easily extended to handle multiple log files
• Page LSN
• Log records of several different types
• Dirty page table

©Silberschatz, Korth and Sudarshan19.20Database System Concepts - 7th Edition

ARIES Data Structures: Page LSN

§ Each page contains a PageLSN which is the LSN of the last log record
whose effects are reflected on the page
• To update a page:

§ X-latch the page, and write the log record
§ Update the page
§ Record the LSN of the log record in PageLSN
§ Unlock page

• To flush page to disk, must first S-latch page
§ Thus page state on disk is operation consistent

• Required to support physiological redo
• PageLSN is used during recovery to prevent repeated redo

§ Thus ensuring idempotence

©Silberschatz, Korth and Sudarshan19.21Database System Concepts - 7th Edition

ARIES Data Structures: Log Record

§ Each log record contains LSN of previous log record of the same
transaction

• LSN in log record may be implicit
§ Special redo-only log record called compensation log record (CLR) used

to log actions taken during recovery that never need to be undone
• Serves the role of operation-abort log records used in earlier recovery

algorithm
• Has a field UndoNextLSN to note next (earlier) record to be undone

§ Records in between would have already been undone
§ Required to avoid repeated undo of already undone actions

LSN TransID PrevLSN RedoInfo UndoInfo

LSN TransID UndoNextLSN RedoInfo

©Silberschatz, Korth and Sudarshan19.22Database System Concepts - 7th Edition

ARIES Data Structures: DirtyPage Table

§ DirtyPageTable
• List of pages in the buffer that have been updated
• Contains, for each such page

§ PageLSN of the page
§ RecLSN is an LSN such that log records before this LSN have

already been applied to the page version on disk
• Set to current end of log when a page is inserted into dirty

page table (just before being updated)
• Recorded in checkpoints, helps to minimize redo work

©Silberschatz, Korth and Sudarshan19.23Database System Concepts - 7th Edition

ARIES Data Structures

©Silberschatz, Korth and Sudarshan19.24Database System Concepts - 7th Edition

ARIES Data Structures: Checkpoint Log

§ Checkpoint log record
• Contains:

§ DirtyPageTable and list of active transactions
§ For each active transaction, LastLSN, the LSN of the last log

record written by the transaction
• Fixed position on disk notes LSN of last completed

checkpoint log record
§ Dirty pages are not written out at checkpoint time

§ Instead, they are flushed out continuously, in the background
§ Checkpoint is thus very low overhead

• can be done frequently

©Silberschatz, Korth and Sudarshan19.25Database System Concepts - 7th Edition

ARIES Recovery Algorithm

ARIES recovery involves three passes
§ Analysis pass: Determines

• Which transactions to undo
• Which pages were dirty (disk version not up to date) at time of crash
• RedoLSN: LSN from which redo should start

§ Redo pass:
• Repeats history, redoing all actions from RedoLSN

§ RecLSN and PageLSNs are used to avoid redoing actions already
reflected on page

§ Undo pass:
• Rolls back all incomplete transactions

§ Transactions whose abort was complete earlier are not undone
• Key idea: no need to undo these transactions: earlier undo

actions were logged, and are redone as required

©Silberschatz, Korth and Sudarshan19.26Database System Concepts - 7th Edition

Aries Recovery: 3 Passes

§ Analysis, redo and undo passes
§ Analysis determines where redo should start
§ Undo has to go back till start of earliest incomplete transaction

Last checkpoint

Log

Time
End of Log

Analysis pass
Redo pass

Undo pass

©Silberschatz, Korth and Sudarshan19.27Database System Concepts - 7th Edition

ARIES Recovery: Analysis

Analysis pass
§ Starts from last complete checkpoint log record

• Reads DirtyPageTable from log record
• Sets RedoLSN = min of RecLSNs of all pages in DirtyPageTable

§ In case no pages are dirty, RedoLSN = checkpoint record’s LSN
• Sets undo-list = list of transactions in checkpoint log record
• Reads LSN of last log record for each transaction in undo-list from

checkpoint log record
§ Scans forward from checkpoint
§ .. Cont. on next page …

©Silberschatz, Korth and Sudarshan19.28Database System Concepts - 7th Edition

ARIES Recovery: Analysis (Cont.)

Analysis pass (cont.)
§ Scans forward from checkpoint

• If any log record found for transaction not in undo-list, adds transaction
to undo-list

• Whenever an update log record is found
§ If page is not in DirtyPageTable, it is added with RecLSN set to LSN

of the update log record
• If transaction end log record found, delete transaction from undo-list
• Keeps track of last log record for each transaction in undo-list

§ May be needed for later undo
§ At end of analysis pass:

• RedoLSN determines where to start redo pass
• RecLSN for each page in DirtyPageTable used to minimize redo work
• All transactions in undo-list need to be rolled back

©Silberschatz, Korth and Sudarshan19.29Database System Concepts - 7th Edition

ARIES Redo Pass

Redo Pass: Repeats history by replaying every action not already reflected in
the page on disk, as follows:
§ Scans forward from RedoLSN. Whenever an update log record is found:

1. If the page is not in DirtyPageTable or the LSN of the log record is
less than the RecLSN of the page in DirtyPageTable, then skip the
log record

2. Otherwise fetch the page from disk. If the PageLSN of the page
fetched from disk is less than the LSN of the log record, redo the log
record

NOTE: if either test is negative the effects of the log record have already
appeared on the page. First test avoids even fetching the page from disk!

©Silberschatz, Korth and Sudarshan19.30Database System Concepts - 7th Edition

ARIES Undo Actions

§ When an undo is performed for an update log record
• Generate a CLR containing the undo action performed (actions

performed during undo are logged physicaly or physiologically).
§ CLR for record n noted as n’ in figure below

• Set UndoNextLSN of the CLR to the PrevLSN value of the update log
record
§ Arrows indicate UndoNextLSN value

§ ARIES supports partial rollback
• Used e.g. to handle deadlocks by rolling back just enough to release

reqd. locks
• Figure indicates forward actions after partial rollbacks

§ records 3 and 4 initially, later 5 and 6, then full rollback

©Silberschatz, Korth and Sudarshan19.31Database System Concepts - 7th Edition

ARIES: Undo Pass
Undo pass:
§ Performs backward scan on log undoing all transaction in undo-list

• Backward scan optimized by skipping unneeded log records as follows:
§ Next LSN to be undone for each transaction set to LSN of last log

record for transaction found by analysis pass.
§ At each step pick largest of these LSNs to undo, skip back to it and

undo it
§ After undoing a log record

• For ordinary log records, set next LSN to be undone for
transaction to PrevLSN noted in the log record

• For compensation log records (CLRs) set next LSN to be undo to
UndoNextLSN noted in the log record
§ All intervening records are skipped since they would have

been undone already
§ Undos performed as described earlier

©Silberschatz, Korth and Sudarshan19.32Database System Concepts - 7th Edition

Recovery Actions in ARIES

©Silberschatz, Korth and Sudarshan19.33Database System Concepts - 7th Edition

Other ARIES Features

§ Recovery Independence
• Pages can be recovered independently of others

§ E.g. if some disk pages fail they can be recovered from a backup
while other pages are being used

§ Savepoints:
• Transactions can record savepoints and roll back to a savepoint

§ Useful for complex transactions
§ Also used to rollback just enough to release locks on deadlock

©Silberschatz, Korth and Sudarshan19.34Database System Concepts - 7th Edition

Other ARIES Features (Cont.)

§ Fine-grained locking:
• Index concurrency algorithms that permit tuple level locking on indices

can be used
§ These require logical undo, rather than physical undo, as in earlier

recovery algorithm
§ Recovery optimizations: For example:

• Dirty page table can be used to prefetch pages during redo
• Out of order redo is possible:

§ redo can be postponed on a page being fetched from disk, and
performed when page is fetched.

§ Meanwhile other log records can continue to be processed

