RRT-Based Game Level Analysis, Visualization, and Visual Refinement

Aaron Bauer and Zoran Popovié
Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

Abstract

Automating parts of game creation benefits both pro-
fessional and amature game designers and much previ-
ous work has already made progress on this front. In
this paper we tackle automating level design. We de-
scribe a general graph-based representation for game
levels and present a preliminary system that leverages
this representation. Our system automatically explores
existing levels of a 2D platform game using the rapidly-
exploring random tree (RRT) algorithm and constructs
a compact graph representation from this exploration.
Our system can also modify a graph representation on-
the-fly to reflect user-directed changes to the existing
level structure. This work constitutes an initial step to-
ward the larger goal of automating level design in a gen-
eral way.

Introduction

Many components of game creation have already received
varying levels of automation and even optimization in pre-
vious work. In terms of automatic game creation, we envi-
sion a system similar to the one described in (Togelius and
Schmidhuber 2008) where, given a space of game mechan-
ics, the system would optimize over possible games. The
goal would be an instantiation of a set of mechanics from
that space possessing certain desirable properties (e.g. good
balance, appropriate difficulty, etc.). A system like this, to-
gether with other content generation tools or collections of
pre-authored content, could significantly increase the acces-
sibility of digital game creation. An important part of such a
system, and a valuable tool in its own right, would be a tech-
nique for automating the analysis and refinement of game
levels.

Fully analyzing a game level requires considering a num-
ber of questions. Perhaps the most basic among these is
reachability; whether the player can reach a given state. The
designer may want to ensure the level’s goal is actually at-
tainable, or ensure a challenging part of the level can’t be
circumvented. Beyond this there are deeper questions one
might ask. For example, “how many distinct paths can the
player take to reach the goal”, “how does the difficulty of
these path compare”, and “how difficult is the level overall”

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

all seek a descriptive characterization of the player’s expe-
rience. A designer might ask meta-questions such as “what
makes this level difficult,” or similarly, “where is the player
most likely to have difficulty.” We believe our approach can
begin to answer questions like these, and our primary con-
tribution lies in efforts to answer the latter meta-questions.
In this paper, we develop a compact graph representation for
game levels, and then visualize this representation to support
level analysis and design.

The remainder of the paper is organized as follows. We
first discuss previous work in automating both game and
level design. We then lay out the details of our graph rep-
resentation and our approach to constructing instances of it.
Then, we describe our implementation and provide example
use cases. Finally, we conclude with discussion and future
work.

Related Work

There have been a number of efforts to automate the de-
sign of game rules or mechanics themselves. Work in auto-
matically generating board game rulesets includes (Browne
and Maire 2010). The authors’ Ludi system used evolu-
tionary search to discover new games and evaluated them
through self-play simulations. The quality of new games
was assessed according to 57 aesthetic criteria of the self-
play results, ranging from duration to drama to uncertainly.
Self-play policies were guided by 20 different “advisers” for
game aspects such as mobility, proximity to goal, attacking
potential, etc. The relevant advisers for each ruleset were
automatically derived and then the policy optimized through
evolutionary search.

As for generating digital games, Togelius and Schmidhu-
ber (2008) automatically generated and tested single-player
Pac-Man-like games using volutionary computation. The fit-
ness function used to evaluate evolved rulesets focused on
the new games’ “learnability.” To measure this, neural net-
works were evolved as Al players for the new games, with
the fitness of a given ruleset was based on how well the Al
players performed.

Other work has sought to automatically generate, analyze,
and test game levels. In (Sorenson and Pasquier 2010), lev-
els for 2D platform games are generated to maximize player
fun. The authors maximize player fun by modeling the chal-
lenge presented by jumps between platforms and generat-



ing levels that maintain an appropriate level of challenge
throughout. Notions of player anxiety, periodic challenge
and “flow” are also incorporated. The authors’ implemen-
tation uses a genetic algorithm to generate levels for Super
Mario Bros.

BIPED, the system presented in (Smith, Nelson, and
Mateas 2009), provides a game sketching language in which
game designers can use to prototype their game in a way
similar to how video games are often physically prototyped.
BIPED enables designers to use machine testing to inves-
tigate questions about the game that would be tedious or
impossible to answer with human players. Similarly, our
framework allows a designer to visualize a level’s reacha-
bility, a property that requires an exhaustive manual search,
and is thus ill-suited for human testers. Smith has substantial
other work on automating game creation (Smith and Mateas
2010) and level design (Smith et al. 2012).

Darken (2007) has much in common with this paper.
Darken uses an autonomous agent to create a waypoint
graph for levels in a 3D first-person environment. Like our
approach, the exploration is done using in-game actions and
simulation, and the resulting graph can be used to assess a
level’s reachability. Darken forsees the waypoint graph be-
ing used by Al-controlled characters in-game and so, in a
second phase, the nodes in the waypoint graph are annotated
for viewshed, cover, and visibility.

Turning Game Levels into Graphs

One of our goals for our level representation is for it to be as
general as possible and a graph is well-suited to this purpose
for several reasons. First, the structure of a graph makes the
general formulation independent of any specific game. More
concretely, the nodes of the graph are game states reachable
by the player in the context of a level, while the edges denote
the possible transitions between these states. For the repre-
sentation to remain general, the process of turning a level
into a graph must also remain agnostic as to the mechanics
of any specific game. Hence, in our general framework, we
deliberately avoid using a game’s logic directly in gather-
ing a level’s reachable states. Given this constraint, for any
game that isn’t simple to the point of triviality, it will likely
be arduous, or even intractable, to enumerate all reachable
states. Our solution is to use a probabilistic search algo-
rithm, namely the Rapidly-Exploring Random Tree (RRT)
algorithm (LaValle and Kuffner 2001), to sample a level’s
state space. This produces a tree with hundreds of game
states as the nodes. We then condense this into a more
descriptive graph by applying a graph clustering algorithm
called the Markov Cluster Algorithm (MCL) (van Dongen
2000). The resulting graph forms a reasonable model of the
level under consideration.

Rapidly-Exploring Random Trees

In our system, the RRT algorithm functions as follows. It
begins with only the player’s initial state, so. Each itera-
tion ¢ it selects a “goal” state, g;, uniformly at random. It
then finds the state currently in the tree, s;, closest to g;, and
executes from s; a player action selected uniformly at ran-
dom, a;. The new state, s;, resulting from this action is then

added to the tree, T. Let s be a game state, a be a player
action, and MOVE(s, a) be a function that returns a state s’
that is the result when « is applied at state s. Then we say
that for iteration , add s; to T' where s; = MOVE(s;, a;).
If applicable, the state corresponding with the player’s ac-
tual goal, g, can be given to the algorithm, along with a goal
bias probability p,, and g will be selected as g; with proba-
bility p,. The reason the algorithm is “rapidly-exploring” is
because it explores from the node closest to g;. Intuitively,
the largest regions of unexplored space are adjacent to the
“frontier” of the tree, and this is where the algorithm is most
likely to explore from.

Clearly, as the RRT algorithm requires a notion of dis-
tance between game states and a way to simulate player
actions, it must use game logic in some way. This logic,
however, is incorporated in a modular way, meaning the
basic algorithm is unaffected. Specifically, there are three
components that are dependent on the game in question.
First, a definition of a game state, D must be provided to
establish what data is associated with each s;. D will be
a vector indicating the domain for each component of the
game state. For example, if, for a given game, the game
state tracks one of three modes and a 2D position, then
D = ({4, B, C}, R?). Second, a function DIST(s1, s2)
from pairs of game states to real numbers is needed to com-
pute a distance metric for states. This is necessary to al-
low for the notion of a “nearest” state. Third, the function
MOVE(s, a) is required to expand the tree. The tree T out-
put by the algorithm can be written in terms of these com-
ponents. For each s; € T except the initial state sy, we can
write it as (s;—1,a;—1), its predecessor and the action that
explored it. Hence, the tree is created by the connectivity
between generated states. See Figure la for a visualization
of the tree for a 2D platform game level.

Clustering

Unfortunately, the tree output by the RRT algorithm is not
particularly useful to us in isolation. It might contain hun-
dreds of states and transitions, and simply not provide the
high-level, compact representation we require. We address
this by using MCL to cluster the tree. The input to this al-
gorithm is a list of pairs of nodes along with the similarity
between the two nodes in each pair. Here, again, a modular,
game-specific component is required. Namely, a function
that computes the similarity between nodes in the tree. The
output of MCL is a partitioning of the nodes into clusters.
More formally, we say the output of MCL is a clustering C,
containing n mutually-disjoint clusters {Sy, ..., S, }. Each
cluster S; = {s;, sj, Sk, ...} is some subset of the nodes
from the original tree 7.

Once we have C', we can construct an informative graph
representation of the level. The clusters become the nodes
in the graph. The edges between the clusters are created and
weighted according to the edges in 7; there is an edge be-
tween two clusters if there are edges between the nodes in
those clusters. Formally, there exists an edge e;; from S; to
S; if there exists some s, € S; such that s,_; € S;. The
weight of e;; is equal to the number of such s;, € S; that
exist. This weight is a natural metric to apply to inter-cluster



edges, as the frequency of transitions from .S; to S; may cor-
relate with the difficulty for the player of making the same
transition. If only small fraction of states in S; have a transi-
tion to a state in .S, it suggests either S; can only be reached
from a very small set of states, or S; can only be reached by
very specific actions, or both. We assume that a task will be
more difficult for a player if they must start from precisely
the correct location or execute precisely the correct action.
In this way, from a clustering C, we construct a graph G that
gives a designer some basis on which to answer questions of
reachability and difficulty. See Figure 1b for a visualization
of the graph for a 2D platform game level.

Figure 1: These are visualizations of the tree produced by
the RRT algorithm (a) and the corresponding clustering (b)
for a simple level from the game Treefrog Treasure. We
describe out application to Treefrog Treasure in detail below.

Graph Recomputation

Though a static graph is a good start, it does a poor job of
supporting rapid, iterative refinement of a level. An ad-
ditional layer is needed to enable the designer to quickly
investigate how changing the level affects reachability and
difficulty. Our approach is to introduce a system that re-
computes the graph in real time in response to changes to
the level. In essence, we present the designer with an inter-
face that displays both the level and the graph G, overlay-
ing them if it semantically relevant to do so (e.g. the level’s
state space includes a geometric coordinate space, so it make
sense to physically place in the level). Then, when the de-
signer makes changes to the level, G is recomputed to reflect
the altered level and displayed accordingly. In this way, the
designer is able to get immediate feedback on the high-level
impacts of the changes they are making. We envision this
system being built on top of an existing level editor for the
game in question. As a level editor is often a vital tool in its
own right, we believe this is a reasonable prerequisite.

To determine the exact recomputation to perform we em-
ploy the following process. First, after a change is made to

the level, we identify the set of directly affected clusters, C,,.
This identification can be done via proximity or by using
some more sophisticated heuristic. After clusters are identi-
fied, for all S; € C,, we compute MOVE(s;, a;) = s} and
MOVE(s;_1, a;—1) = s;_, forall s; € S; using the altered
level (we recompute all incoming and outgoing edges for all
nodes in all affected clusters). We adjust G to reflect where
s} and s;_ differ from the results computed using the orig-
inal level. In addition, we compute the results of random
actions from a small number of states distributed through-
out the level to increase the chances of finding undiscovered
graph edges introduced by the designer’s change. For this
system, we focus on changes that affect the level locally,
rather than changes that affect the level as a whole. This sys-
tem is intended to be employed after an initial level design
is complete to support analysis and refinement of the de-
sign. The key is that since we restrict the scope of changes
to be local, we are able to focus our recomputation of the
graph appropriately. This increases both the speed and ac-
curacy of the recomputation because it means fewer samples
needed overall and allows us to concentrate sampling where
the level actually changed.

Application to Treefrog Treasure

To put our graph representation for levels into action, we
implemented our the system described above for a 2D plat-
form game called Treefrog Treasure being developed by the
Center for Game Science (CGS) at the University of Wash-
ington. The game has a large variety of features, but for
this initial implementation we chose to work with a limited
subset.

In our limited version, the player takes on the role of a
frog that sticks to the surfaces of a level, which consist of
walls and floating platforms. The frog begins a level at a
specified location, and the objective is to reach a goal loca-
tion marked by a golden bug. The player interacts using the
mouse, clicking to make the frog jump. The position of the
mouse controls the direction and speed of the jump; the far-
ther away the mouse is from the frog, the greater the speed
of the jump. Once the frog is in the air, the player can take
no action until it lands. Gravity affects the frog while it is in
the air. Figure 2 shows Treefrog Treasure in action.

We implemented the necessary game-specific compo-
nents for Treefrog Treasure: the definition of state space
(simply the frog’s position and orientation bounded by the
size of the level), a euclidean distance function over the
frog’s position, and a function to compute the outcome of
player actions. The latter was accomplished by setting up
the game itself as an “oracle” that could, given a starting
state and a player action, produce the resulting state. This
required minor instrumentation of the game’s code to allow
it to execute arbitrary actions from arbitrary states. We used
the RRT algorithm implementation available in the Open
Motion Planning Library (The Open Motion Planning Li-
brary (OMPL) 2010). Treefrog Treasure is implemented in
ActionScript and OMPL in C++, so we had Treefrog Trea-
sure act as a web server to which the RRT algorithm could
connect and submit its state-action queries.



Figure 2: In this level the frog begins in the lower left corner
and must reach the golden bug in the upper right in order to
complete the level.

To perform the clustering we used the implementation of
MCL available at micans.org/mcl. The similarity met-
ric we used for clustering is based on the proximity of nodes’
predecessors and successors. We first used the XML file
specifying each Treefrog Treasure level to extract the sur-
faces in the level. We only calculated similarity for nodes on
the same surface; nodes not on the same surface implicitly
had no similarity. To calculate the similarity between nodes
a and b, we find the predecessor of a and the predecessor of
b that are closest together. Let these nodes be a,, and b,,, re-
spectively. We do likewise with successors of a and b to get
an and b,,. We then compute the distance d,, between a,, and
b, and the distance d,, between a,, and b,,. The similarity of
a and b is inversely proportional to the quantity d, + d.,.

Visualization

Visualization of the graph was implemented on top of the
Treefrog Treasure level editor, also built in ActionScript.
The level editor displays a schematic view (i.e. monochro-
matic platforms and walls) of the level currently being
edited. It allows a designer to manipulate the elements of a
level in various ways, including specifying translation, scal-
ing and rotation for existing elements, removing existing el-
ements from the level, and adding new elements to the level.
Our graph for the level is overlaid on top, physically placing
it in the context of the level. The clusters are displayed as
circles with size proportional to the number of constituent
nodes. The clusters are located at the same location as their
highest-degree member node. The edges are displayed as
curved lines, and are colored with a red-blue gradient to in-
dicate their direction; red by their source and blue by their
destination. Figures 3, 4, and 5 show the visualization ap-
plied to several Treefrog Treasure levels.

Recomputation

Within the Treefrog Treasure level editor, when the user
changes an element in the level, we identify the affected
clusters by proximity to the changed element. Specifically,
any clusters located on a surface of the changed element are
considered affected. As described above we then recompute
the incoming and outgoing edges of the nodes in those clus-
ters. In addition, we compute the results of a new action
from several random nodes in each cluster. We bias these
actions to have high speed and to be in the direction of the

Figure 3: This is a portion of a graph near the starting po-
sition (indicated by the frog) in a Treefrog Treasure level.
The dark grey objects are the walls and platforms. Note how
there is a single cluster for each surface. A couple important
observations are made possible by the visualization. First,
by the thick edges, we see that it’s probably easy for the
player to reach the left wall and the bottom and sides of the
platform from the floor and vice versa. Second, it appears
considerably more difficult for the player to reach the top of
the platform, indicated by the fact thin blue edges connect to
the cluster there.

Figure 4: This is a portion of a graph near the goal position
in a Treefrog Treasure level. We can immediately see that
there are four edges leading into the golden bug marking the
goal. A closer look reveals, however, only the cluster on the
right wall has incoming edges from clusters other than the
five clusters visible here. This indicates that the easiest path
of the player is first to the right wall, then to the goal or the
right side of the platform.

changed element. Figure 6 shows a visualization of this re-
computation. In order to achieve high enough performance
to provide real-time interaction, however, we approximate
the recomputation. Instead of using the full Treefrog Trea-
sure engine to recompute each edge, we treat the frog as
a point and compute the parabolic path this point follows
given the speed and direction of the action. Though this ap-
proximation does not take into account the area of the frog, it
is still accurate enough for the purpose of visual refinement.
Figure 7 demonstrates a use case of our recomputation.



Figure 5: Here are two other Treefrog Treasure levels with
their corresponding graph representations. In (a) we can see
the player has only one path available initially, but as they
near the goal, the graph branches out, indicating more player
choice. In (b) we note it appears difficult or impossible for
the player to reach the goal from above; the only edges to it
in the graph come from below.

Discussion

The first thing to note is the degree to which our approach
enables a level designer’s to analyze and refine a level. We
have shown the usefulness of both our visualization and our
recomputation. As detailed in the figures, our system can
help a designer identify what areas of a level a player can
reach, and how those areas are reached. In addition, a de-
signer can then get real-time feedback as they edit the level.
It is also worth noting that our more general framework for
RRT-based level analysis exists independent of a particular
game or genre and could serve as the foundation for varied
applications. One important aspect of our framework that
remains largely hpothetical, however, is the correlation be-
tween edge weight and difficulty. We are assuming that in
most cases a transition that requires higher precision is more
difficult, but we have yet to validate this assumption with
player data.

Our application to Treefrog Treasure, however, is an in-
complete realization of our framework. First of all, it cur-
rently functions on only a small subset of the Treefrog Trea-
sure game. It does not yet support dynamic objects within a
level other than the player and it relies on an approxima-
tion for the graph recomputation. In general, the recom-
putation should be able to reproduce every action. For the
purposes of this application, however, we chose to sacrifice
a small amount of accuracy in order to achieve interactive
speeds. We believe it is possible to implement the recom-
putation such that it is entirely accurate and provides the
necessary performance, but we leave this for future work.
Furthermore, our recomputation does not currently support
all the operations available in the Treefrog Treasure level ed-
itor. Rotation is not supported, and modifying the four outer

R X T
S A
&\mmfﬁm&

Figure 6: At the top, (a) shows the initial level configura-
tion. The user then moves the platform to the left, so the
graph needs to be locally recomputed. When recomputation
occurs, the user has the option to view a visualization show-
ing all the individual recomputed actions (b). The black lines
are outgoing edges that resulted in different states than in the
original tree. The white lines are the same, but for incom-
ing edges (we see that they pass through where the platform
used to be). The purple lines are the new random actions.
(c) shows the new graph following the recomputation.

walls that form the boundaries of the level can cause insta-
bilities such as supurious nodes. We plan to support all level
editor operations in the future.

Though our graph recomputation is done at interactive
speeds, our current implementation achieves real-time feed-
back only imperfectly. After the user specifies a change to
a level element, all the recomputation is done as a batch, re-
sulting in about a second of lag before the graph updates.
Exactly how long an update takes depends on the number
of edges that have to be recomputed, with most updates in-
volving several hundred edges. To accommodate the work-
flow of a level designer, the recomputation would need to
be done on-line; the system would respond immediately and
then gradually refine the graph as the results of the recom-
putation streamed in. The implementation presented here,
however, is sufficient for a proof-of-concept that such re-
computation is both feasible and potentially useful.



Figure 7: This shows a use case for our interactive graph re-
computation. At the top, (a) shows the initial level, where
the designer sees that the player can reach the goal by jump-
ing from the right wall to the upper right platform. The de-
signer decides they would prefer that this wasn’t possible
and deletes the offending platform. The recomputation kicks
in, showing the designer (b), alerting them to the fact that the
goal is no longer reachable. The designer then moves the
goal to above the remaining platform and the recomputed
graph confirms it is now reachable (c).

Conclusions and Future Work

Our framework for representing levels as graphs along with
our application of that framework to Treefrog Treasure serve
only as initial steps in establishing a general approach to
level analysis, visualization and refinement. As such, there
remains a great deal of future work. Our general framework
could be expanded to automatically address a far greater
number of useful queries about game levels. One such addi-
tion would be the automatic detection of paths in the graph
from the start state to the goal state. These could be high-
lighted for a designer along with relevant features, such as
the most difficult edge in each path or any “bottleneck”
nodes that every path must pass through. This would en-
able the system to not only show a designer the effects of
the changes they make, but to highlight areas where changes
might be needed.

Another, more ambitious, extension would be to tackle
the “inversion” of out current recomputation. Specifically,
we would allow the user to manipulate the graph, and then

perform optimization over the space of local changes to the
level to produce a solution level that was the best fit for the
modified graph. In other words, in addition to turning levels
into graphs, we would also turn graphs into levels. If this
technique were to be developed further, perhaps an entire
level could be synthesized from a graph, enabling a designer
to make compact, high-level changes to generate a whole
suite of related levels.

The framework we’ve presented here provides a way to
reason about the complexity of game levels and could form
the basis for many future automated tasks. In a way, the
graph representation we describe is an abstract language for
expressing the challenge presented by an individual game
level. We believe it offers a rich avenue for further research
with a number of possible applications.

Acknowledgements

We would like to thank the creators of Treefrog Treasure:
Yun-En Liu, Tim Pavlik, Seth Cooper, Marianne Lee, Bar-
bara Krug, Franc¢ois Boucher-Genesse, Fernando Labarthe,
Eleanor O’Rourke, FErik Andersen, Brian Britigan, and
Atanas Kirilov. This work was supported by the Univer-
sity of Washington Center for Game Science, DARPA grant
FA8750-11-2-0102, and the Bill and Melinda Gates Foun-
dation.

References

Browne, C., and Maire, F. 2010. Evolutionary Game Design.
IEEE Transactions on Computational Intelligence and Al in Games
2(1):1-16.

Darken, C. J. 2007. Level Annotation and Test by Autonomous
Exploration. In Proceedings of the Third International Conference
on Artificial Intelligence for Interactive Digital Entertainment.

LaValle, S. M., and Kuffner, J. J. 2001. Randomized Kinody-
namic Planning. The International Journal of Robotics Research
20(5):378-400.

Smith, A. M., and Mateas, M. 2010. Variations Forever: Flexibly

generating rulesets from a sculptable design space of mini-games.
273-280. Ieee.

Smith, A. M.; Andersen, E.; Mateas, M.; and Popovi¢, Z. 2012. A
Case Study of Expressively Constrainable Level Design Automa-
tion Tools for a Puzzle Game. In Proceedings of the Seventh Inter-
national Conference on the Foundations of Digital Games.

Smith, A. M.; Nelson, M. J.; and Mateas, M. 2009. Computa-
tional Support for Play Testing Game Sketches. In Proceedings
of the Fifth International Conference on Artificial Intelligence for
Interactive Digital Entertainment.

Sorenson, N., and Pasquier, P. 2010. The Evolution of Fun : Auto-
matic Level Design through Challenge Modeling. In Proceedings
of the International Conference on Computational Creativity, 258—
267.

The Open Motion Planning Library (OMPL). 2010.
http://ompl.kavrakilab.org.

Togelius, J., and Schmidhuber, J. 2008. An experiment in auto-
matic game design. In IEEE Symposium On Computational Intel-
ligence and Games, 111-118.

van Dongen, S. 2000. Graph Clustering by Flow Simulation. Ph.D.
Dissertation, University of Utrecht.



