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ABSTRACT
Problem-solving skills in creative, open-ended domains are both
important and little understood. These domains are generally ill-
structured, have extremely large exploration spaces, and require
high levels of specialized skill in order to produce quality solutions.
We investigate problem-solving behavior in one such domain, the
scientific-discovery game Foldit. Our goal is to discover differentiat-
ing patterns and understand what distinguishes high and low levels
of problem-solving skill. To address the challenges posed by the
scale, complexity, and ill-structuredness of Foldit solver behavior
data, we devise an iterative visualization-based methodology and use
this methodology to design a concise, meaning-rich visualization of
the problem-solving process in Foldit. We use this visualization to
identify key patterns in problem-solving approaches, and report how
these patterns distinguish high-performing solvers in this domain.
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1. INTRODUCTION
As efforts in scalable online education expand, interest continues
to increase in moving beyond small, highly constrained tasks, such
as multiple choice or short answer questions, and incorporating
creative, open-ended activities [7, 14]. Existing research supports
this move, showing that problem-based learning can enhance stu-
dents’ problem-solving and metacognitive skills [11]. Scaling such
activities poses significant challenges, however, in terms of both as-
sessment and feedback. It will be vital to devise scalable techniques
not only to assess students’ final products, but also to understand
their progress through complex and heterogeneous problem-solving
spaces. These techniques will apply to a broad range of education
settings, from purely online programs like Udacity’s Nanodegrees
to more traditional settings where new standards like the Common
Core emphasize strategic problem solving.

A growing body of work has found that educational and serious
games are fertile ground for assessing students’ capabilities and
problem-solving skills [6, 10]. Our work continues this general
line of inquiry by examining creative, problem-solving behavior
among players in the scientific-discovery game Foldit. By modeling
the functions of proteins, the workhorses of living cells, Foldit
challenges players, hereafter referred to as solvers, to resolve the
shape of proteins as a 3D puzzle. These puzzles are completely
open and often under-specified, making it a highly suitable setting
in which to gain insight into student progress through complex
solution spaces. In the Foldit scientific-discovery community, the
focus is on developing people from novices to experts that are
eventually capable of solving protein structure problems that are

currently unsolved by the scientific community. In fact, solutions
produced in Foldit have led to three results published in Nature [3,
5, 16]. Foldit is an attractive learning space domain because its
solvers are capable of contributing to state-of-the-art biochemistry
results, and the vast majority of best performing solvers had no
exposure to biochemistry prior to joining Foldit community. Hence,
solver behavior in Foldit represents development of highly effective
problem-solving in an open-ended domain over long time horizons.
In this work, we identify six strategic patterns employed by Foldit
solvers and show how these patterns differentiate between successful
and less successful solvers. These patterns cover instances where
solvers investigate multiple hypotheses, explore more greedily or
more inquisitively, try to escape local optima, and make structured
use of the manual or automated tools available in Foldit.

The aspects of the Foldit environment that make it an attractive
setting in which to study problem solving also present significant
challenges. Problems in Foldit share many of the properties Jonassen
attributes to design problems, which they describe as “among the
most complex and ill-structured kinds of problems that are encoun-
tered in practice” [13]. These properties include a vague goal with
few constraints (in Foldit, the goal is often entirely open-ended:
find a good configuration of the protein), answers that are neither
right or wrong, only better or worse, and limited feedback (in Foldit,
real-time feedback and solution evaluation are limited to a single
numerical score corresponding to the protein’s current energy state,
and solvers frequently must progress through many low-scoring
states to reach a good configuration; more nuanced feedback from
biochemists is sometimes available, but on a timescale of weeks).
The ill-structured nature of problems posed in Foldit necessarily
deprives us of the structures, such as clear goal states and straight-
forward relationships between intermediate states and goal states,
that typically form the basis of existing detailed and quantitative
analyses of problem-solving behavior.

The size and complexity of Foldit’s problem space presents another
major challenge. Even though the logs of solver interactions consist
only of regular snapshots of a solver’s current solution (along with
attendant metadata), the record of a single solver’s performance on
a given problem frequently consists of thousands of such snapshots
(which in turn are just a sparse sampling of the actual solving pro-
cess). Furthermore, the nature of the solution state, the configuration
of hundreds of components in continuous three-dimensional space,
renders collapsing the state space by directly comparing solution
states impractical. Compounding the size of the problem space is
the complexity of the actions available to Foldit solvers. In addition
to manual manipulation of the protein configuration, solvers can
invoke various low-level automated optimization routines (some
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of which run until the solver terminates them) and place different
kinds of constraints on the protein configuration (rubber bands in
Foldit parlance) that restrict its modification in a variety of ways.
Solvers can also deploy many of these tools programmatically via
Lua scripts called recipes. Taken together these challenges of ill-
structuredness, size, and complexity threaten to make analysis of
high-level problem-solving behavior in Foldit intractable.

To overcome these obstacles, we devise a visualization-based method-
ology capable of producing tractable representations of Foldit solvers’
problem-solving behavior while maintaining the key encodings nec-
essary for analysis of high-level strategic behavior. A process of
iterative summarization forms the core of this methodology, and
ensures that the transformations applied to the raw data do not
elide structures potentially relevant to understanding solvers’ unique
strategic behavior. Using this methodology, we examine solver activ-
ity logs from 11 Foldit puzzles, representing 970 distinct solvers and
nearly 3 million solution snapshots. Leveraging metadata present
in the solution snapshots, we represent solving behavior as a tree,
and apply our methodology to visualize a summarized tree showing
where they branched off to investigate multiple hypotheses, how
they employed some of the automated tools available to them, and
other salient problem-solving behavior. We use these depictions to
determine key distinguishing features of this exploration process.
We subsequently use these features to better understand the patterns
of expert-level problem solving.

Our work focuses on the following research questions: (1) how
can we visually represent an open-ended exploration towards a
high-quality solution in a large, ill-structured problem space? (2)
what are the key patterns of problem-solving behavior exhibited
by individuals?, and (3) what are the key differences along these
patterns between high-performing and lower-performing solvers in
an open-ended domain like Foldit? In addressing these questions we
find that high-performing solvers explore the solution space more
broadly. In particular, they pursue more hypotheses and actively
avoid getting stuck in local minima. We also found that both high-
and lower-performing solvers have similar proportion of manual and
automated tool actions, indicating that better performance on open-
ended challenges stems from the quality of the action intermixing
rather than aggregate quantity.

2. RELATED WORK
While automated grading has mostly been explored for well-specified
tasks where the correct answer has a straightforward and concise
description, some previous work has developed techniques for more
complex activities. Some achieve scalability through a crowd-
sourcing framework such as Udacity’s system for hiring external
experts as project reviewers [14]. Other work has demonstrated
automated approaches that leverage machine learning to enable scal-
able grading of more complex assignments. For example, Geigle et
al. describe an application of online active learning to minimize the
training set a human grader must produce [7] when automatically
grading an assignment where students must analyze medical cases.
Our work does not focus on grading problem-solving behavior, but
instead approaches the issue of scalability at a more fundamental
level: understanding fine-grained problem-solving strategies and
how they contribute to success in an open-ended domain.

A robust body of prior work has addressed the challenge of both
visualizing and gleaning insight from player activity in educational
and serious games. Andersen et al. developed Playtracer, a gen-
eral method for visualizing players’ progress through a game’s

state space when a spatial relationship between the player and the
virtual environment is not available [1]. Wallner and Kriglstein pro-
vide a thorough review of visualization-based analysis of gameplay
data [21]. Prior work has analyzed gameplay data without visual-
ization as well. Falakmasir et al. propose a data analysis pipeline
for modeling player behavior in educational games. This system
can produce a simple, interpretable model of in-game actions that
can predict learning outcomes [6]. Our work differs in its aims from
this prior work. We do not seek to develop a general visualization
technique, but instead to design and leverage a domain-specific
visualization to analyze problem-solving behavior. We are also
not predicting player behavior, nor modeling players in terms of
low-level actions, but rather identifying higher-level strategy use.

The work most similar to ours is that which focuses on problem-
solving behavior, including both the long-running efforts in edu-
cational psychology to develop general theories and more recent
work data-driven on understanding the problem-solving process.
Our formulation of solving behavior in Foldit as a search through
a problem space follows from classic information-processing the-
ories of problem solving (e.g., [9, 19]). Gick reviews research on
both problem-solving strategies and the differences in strategy use
between experts and novices [8]. Our work complements the ex-
isting literature by focusing on understanding problem solving in
the little-studied domain of scientific-discovery games, and on the
ill-structured problems present in Foldit. Our findings on the differ-
ences in strategy use between high- and lower-performing solvers in
Foldit are consistent with the consensus in the literature that expert’s
knowledge allows them to effectively use strategies that are poorly
or infrequently used by less-skilled solvers. We also contribute a
granular understanding of the specific strategies and differences at
work in the Foldit domain.

Significant recent work has investigated problem-solving behavior
in educational games and intelligent tutoring systems using a variety
of techniques. Tóth et al. used clustering to characterize problem-
solving behavior on tasks related to understanding a system of linear
structural equations. The clusters distinguished between students
that used a vary-one-thing-at-a-time strategy (both more and less
efficiently) and those that used other strategies [20]. Through a
combination of automated detectors, path analysis, and classroom
studies, Rowe et al. investigated the relationship between a set
of six strategic moves in a Newtonian physics simulation game
and performance on pre- and post-assessments. They found that
the use of some moves mediated the relationship between prior
achievement and post scores [18]. Eagle et al. discuss several ap-
plications of using interaction networks to visualize and categorize
problem-solving behavior in education games and intelligent tu-
toring systems. These networks offer insight for hint generation
and a flexible method for visualizing student work in rule-using
problem solving environments [4] . Using decision trees to build
separate models for optimal and non-optimal student performance,
Malkiewich et al. gained insight into how learning environments
can encourage elegant problem solving [17]. Our primary contri-
bution is to extend analysis of problem-solving behavior to a more
complex and open-ended domain that those studied in similar pre-
vious work. The size and complexity of Foldit’s problem space,
the volume of data necessary to capture exploration in this space,
and the ill-structured nature of the Foldit problems all pose unique
challenges. We devise a visualization-based methodology focused
on iterative summarization, and successfully apply it to identify key
problem-solving patterns exhibited by Foldit solvers.
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3. FOLDIT
Foldit is a scientific-discovery game that crowdsources protein fold-
ing. It presents solvers with a 3D representation of a protein and
tasks them with manipulating it into the lowest energy configura-
tion. Each protein posed to the solvers is called a puzzle. Solvers’
solutions to each puzzle are scored according to their energy config-
uration, and solvers compete to produce the highest scoring results.

Figure 1: The Foldit interface. Foldit solvers use a variety of
tools to interactively reshape proteins. In this figure, a solver
uses rubber bands to pull together two sheets, long flat regions
of the protein.

Solvers have many tools at their disposal when solving Foldit puz-
zles. They can manipulate and constrain the structure in various
ways, employ low-level automated optimization (e.g., a wiggle tool
makes small, rapid, local adjustments to try and improve the score),
and trigger solver-created automated scripts called recipes that can
programmatically use the other tools. There is, however, a subset of
the basic actions that cannot be used by recipes. We will call these
manual-only actions. Previous work analyzing solver behavior in
Foldit has focused primarily on recipe use and dissemination [2] and
recipe authoring [15].

Foldit has several different types of puzzles for solvers to solve. In
this work, we focus on the most common type of puzzle, prediction
puzzles. These are puzzles in which biochemists know the amino
acids that compose the protein in question, but do not know how
the particular protein folds up in 3D space. This is in contrast to
design puzzles in which solvers insert and delete which amino acids
compose the protein to satisfy a variety of scientific goals, including
designing new materials and targeting problematic molecules in
diseases. We focus on prediction puzzles in this work to simplify
our analysis by having a consistent objective (i.e., maximize score)
across the problem-solving behavior we analyze.

4. METHODOLOGY
Prior work has demonstrated the power of visualization to support
understanding of problem-solving behavior (e.g., [12]). Hence, we
devise a methodology capable of producing concise, meaning-rich
visualizations of the problem-solving process in Foldit, and then
leverage these visualizations to identify key patterns of solver be-
havior. We are specifically interested in how solvers navigate from
a puzzle’s start state to a high-quality solution, what states they
pass through in between, and what other avenues they explored.

Since solving a Foldit puzzle can be represented as a directed search
through a problem space, the clear encoding of parent-child rela-
tionships between nodes offered by a tree make it well-suited for
visualizing these aspects of the solving process.

The scale of the Foldit data necessitates significant transformation
of the raw data in order to render concise visualizations. Without
any transformation, meaningful patterns are overwhelmed by sparse,
repetitive data and would be far more challenging to identify. While
there are many existing techniques for large-scale tree visualization,
we find clear benefits to developing a visualization tailored to the
Foldit domain. Specifically, preserving the semantics of our visual
encoding is crucial for allowing us to connect patterns in the visual-
ization to concrete strategic behavior in Foldit. To accomplish this,
the process by which concise visualization are constructed must
be carefully designed to maintain these links. Hence, we devise a
design methodology focused on iterative summarization.

This process begins by visualizing the raw data. This is followed
by iteratively building and refining a set of transformations to sum-
marize the raw data while preserving meaning. The design of these
transformations should be guided by frequently occurring structures.
That is, those structures that the transformations can condense with-
out eliding structures corresponding to unique strategic behavior.
In parallel to this iterative design, a set of visual encodings are de-
veloped to represent the solving process as richly as possible. Key
to this entire process is frequent consultation with domain experts,
in our case experts on Foldit and its community. By applying this
iterative methodology for several cycles, we designed a domain-
specific visualization that we use to identify patterns of strategic
behavior among Foldit solvers. We follow up on these patterns with
computational investigation, and quantify their application by high-
and lower-performing solvers.

4.1 Data
For our analysis, we selected 11 prediction puzzles spanning the
range of time for which the necessary data is available. Though
Foldit has been in continuous use since 2010, the data necessary to
track a solver’s progress through the problem space has only been
collected since mid-2015. Our chosen dataset represents 970 unique
solvers and nearly 3 million solution snapshots. These 11 puzzles are
just a small subset of the available Foldit data. We chose a subset of
similar puzzles (i.e., a subtype of relatively less complex prediction
puzzles) in order to make common solving-behavior patterns easier
to identify. The size of the subset was also guided by practical
constraints, as each puzzle constitutes a large amount of data (20-60
GB for the data from all players on a single puzzle).

The data logged by Foldit primarily consists of snapshots of solver
solutions as they play, stored as text files using the Protein Data
Bank (pdb) format. These snapshots include the current protein
pose, a timestamp, the solution’s score, the number of times the
solver has invoked each action and recipe, and a record of the inter-
mediate states that led up to the solution at the time of the snapshot.
This record, or solution history, is a list of unique identifiers each
corresponding to a previous solution state. This list is extended
every time the solver undoes an action or reloads a previous solution.
Hence, by comparing the histories of two snapshots from the same
solver, we can answer questions about their relationship (e.g., does
one snapshot represent the predecessor of another; where did two
related snapshots diverge). The key relationship for the purposes of
this analysis is the direct parent-child relationship, which we use to
generate trees that represent a solver’s solving process.
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4.2 Visualizing Solution Trees
We applied our methodology to our chosen subset of Foldit data to
design a visualization of an individual’s problem-solving process
as a solution tree. Several key principles guided this design. First,
since our goal is to discover key patterns, the visualization needs
to highlight distinctly different strategies and approaches. These
differences cannot be buried amidst enormous structures, nor de-
stroyed by graph transformations. Second, the visualization must
depict the closeness of each step to the ultimate solution in both time
and quality to give a sense of the solver’s progression. Third, the
solver’s use of automation in the form of recipes should be apparent
since the use of automation is an important part of Foldit.

The fundamental organization of the visualization is that each node
corresponds to a solution state encountered while solving. Using the
solution history present in the logged snapshots of solver solutions,
we establish parent-child relationships between solutions. If solution
β is a child of solution α , it indicates that β was generated when
the solver performed actions on α . One crucial limitation, however,
is that a snapshot of the solver’s current solution is captured far less
often (only once every two minutes) than the solver takes actions.
This means that our data is sparsely distributed along a solution’s
history going back to the puzzle’s starting state. Hence, when naively
constructing the tree from the logged solution histories, it ends up
dominated by vast quantities of nodes with no associated data.

We address this issue by performing summarization on the solution
trees, condensing them into concise representations amenable to
analysis for important features. This summarization takes place
in two stages. The first stage trims out nodes that (1) do not have
corresponding data and (2) have zero children. This eliminates
large numbers of leaf nodes that we are unable to reason about
given that we lack the corresponding data. This stage also combines
sequences of nodes each with only one child into a single node. For
the median tree, this stage reduced the number of nodes by an order
of magnitude from over 12,000 nodes to about 1,600.

The second stage consists of four phases, each informed by our
observations of common patterns in trees produced by the first stage
that would benefit from summarization. The first phase, called
prune, focuses on simplifying uninteresting branches. We observed
many of the branches preserved by the first stage were small, with
at most three children, and only continued the tree from one of
those children. Prune removes the leaf children of these branches
from the tree. Collapse, the second phase, transforms each of the
sequences of single-child nodes left behind after prune into single
nodes. The third phase, condense, targets another common pattern
where a sequence of branches feed into each other, with a child of
each branch the parent of the next branch. These sequences are
summarized into a single node labeled CASCADE along with the
depth (number of branches) and width (average branching factor)
of the summarized branches. See Figure 2 for an example of the
features summarized by these three phases. The final phase, clean,
targets the ubiquitous empty nodes (i.e., nodes for which we lack
associated data) shown in black in Figure 2. We eliminate them by
merging them with their parent node, doing so repeatedly until they
all have been merged into nodes that contain data. In addition to
making the trees more concise, this step allows us to reason more
fully over the trees since all nodes are guaranteed to contain data.
This second stage of summarization further reduced the number of
nodes in the median tree by another order of magnitude to about
300 nodes. Summarization similarly reduces the space required to
store the data by two orders of magnitude.

Figure 2: A solution tree after only the first stage of summa-
rization. The non-black node color represents the score of the
solution at that node (red is worse). The black nodes are empty
in that we do not have solution data corresponding to that node.
This figure also shows examples of the features targeted by the
second summarization stage: prune and collapse eliminate long
chains like the one on the right, and condense combines se-
quences of branches like those going down to left in single CAS-
CADE nodes.

Child-parent relationships are not the only part of the data we visu-
ally encoded in the solution trees. Nodes are colored on a continuous
gradient from red to blue according to the score of the solution rep-
resented by that node (red is low-scoring, blue is high-scoring). The
best-scoring node is highlighted as a yellow star. Edges are colored
on a continuous gradient from light to dark green according to the
time the corresponding transition took place, and the children of
each node are arranged left to right in chronological order. Finally,
use of automation via recipes is an important aspect of problem-
solving in Foldit. Since the logged solution snapshots contain a
record of which recipes have been used at that point, we can use this
to annotate nodes where a recipe was triggered. The annotations
consist of the id of that recipe (a 4 to 6 digit number) and the number
of times it was started.

One major weakness in the data available to us is the lack of a con-
sistent way to determine when the execution of a recipe ended (some
recipes save and restore, possibly being responsible for multiple
nodes in the graph beyond where they were triggered). We partially
address this by further annotating a node with the label MANUAL
whenever the solver took a manual-only action at that node. This
indicates that no previously triggered recipe continued past that node
because no recipe could have performed the manual-only action.
Since nodes in the summarized trees can represent many individual
steps, it is possible for them to have several of these recipe and
manual action annotations.

5. RESULTS
Using visualized solution trees for a large set of solvers across our
sample of 11 puzzles, we identify a set of six prominent patterns in
solvers’ problem-solving behavior. These patterns do not encompass
all solving behavior in Foldit, but instead capture key instances of
strategic behavior in three categories: exploration, optimization, and
human-computer collaboration. Future work is needed to generate
a comprehensive survey of the strategic patterns in these and other
categories. In this analysis, our focus is on identifying a small,
diverse set of commonly occurring patterns to both provide initial
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insight into problem-solving behavior, and to demonstrate the poten-
tial of our approach. In addition to identification, we also perform
a quantitative comparison of how these patterns are employed by
high-performing and lower-performing solvers to gain an under-
standing of how these patterns contribute to success in an open-end
environment like Foldit.

5.1 Problem-Solving Patterns

Exploration. Foldit solvers are confronted with a highly discon-
tinuous solution space with many local optima, creating a trade-off
between narrowly focusing their efforts or taking the time to explore
a broader range of possibilities. In our first two patterns, we exam-
ine the broader exploration side of this trade-off at two different
scales. Taking the macro-scale first, we identify a pattern where
solvers make significant progress on distinct branches of the tree
(see Figure 3 for an example). We interpret this pattern as the solver
investigating multiple hypotheses about the puzzle solution, using
multiple instances of the game client or Foldit’s save and restore fea-
tures to deeply explore them all. We call this the multiple hypotheses
pattern.

Figure 3: An example of the multiple hypotheses pattern. The
two hypotheses branch out one of the nodes at the top and con-
tinue to the left (A) and right (B).

At the micro-scale, solvers very frequently generate a large number
of possible next steps (i.e., a branch with a large number of children),
but most often proceed to explore only one of them further. This is
natural given the iterative refinement needed to successfully partici-
pate in Foldit. Hence, solvers that exhibit a pattern of much more
frequently exploring multiple local possibilities demonstrate an un-
usual effort to explore more broadly. We call this the inquisitive
pattern. Figure 4 shows an example of this behavior.

Figure 4: An example of the inquisitive pattern. Note how fre-
quently multiple children of the same node are explored when
compared to the tree in Figure 3.

Optimization. Navigating the extremely heterogeneous solution
space is the primary challenge in Foldit, so we look closely at how
solvers attempt to optimize their solutions, digging deeper into
solvers’ approach to exploration than the previous two patterns.
We identify two related patterns describing solvers’ fine-grained
approach to optimization. The solution spaces of Foldit puzzles
contain numerous local optima that solvers must escape, and we
identify an optima escape pattern highly suggestive of a deliberate
attempt to escape a local optima. This pattern occurs when a solver

has a high-scoring node with a low-scoring child, and then chooses
to explore from the low-scoring child. The solver was willing to
ignore the short-term drop in score to try and reach a more beneficial
state in the long-term. Figure 5 gives an example of this pattern.

Figure 5: An example of the optima escape pattern. The solver
transitions from a relatively high-scoring (i.e., blue) state in the
upper left to a low-scoring (i.e., red) state. What makes this
an example of the pattern is that exploration from the low-
scoring state. In this case, the perseverance paid off as the
solver reaches even higher-scoring states in the lower right.

In the other direction, we identify the greedy pattern in which solvers
exclusively explore from the best-scoring of the available options.
Obviously, some amount of greedy exploration is necessary in order
to refine solutions, but in its extreme form deserves recognition
as a pattern with significant potential impact on problem-solving
success. Naturally, these two patterns do not cover all the ways
solvers explore the problem space, but they do characterize specific
strategic behavior of interest in this analysis.

Figure 6: An example of the repeated recipe pattern. At three
points in this solution tree snippet, the solver applies recipe
49233 to every child of a node.

Human-computer collaboration. Human-computer collabo-
ration is a vital part of Foldit, and managing the trade-off between
automation and manual intervention is a key feature of solving
Foldit puzzles. We identify two patterns that each focus on one
side of this trade-off. The first, the manual pattern, corresponds to
extended sections of exclusively manual exploration. Since recipe
use is very common, extended manual exploration represents a sig-
nificant investment in the manual intervention side of the trade-off.
Limitations with Foldit logging data prevent us from capturing all
the manual exploration (i.e., it is not always possible to determine
whether an action was performed by a solver manually or triggered
as part of an automated recipe), but what can be captured is still an
important dimension of variance among problem-solving behavior.

Our final pattern concerns recipe use. Some solvers apply a recipe
to every child of a node periodically throughout their solution tree,
using it as a clean-up or refinement step before continuing on (see
Figure 6). We call this the repeated recipe pattern. Recipe use is
very diverse and frequently doesn’t display any specific structure,
making this pattern interesting for its regimented way of managing
some of the automation while solving.
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Figure 7: The number of hypotheses pursued in each solution
tree for high- and lower-performing solvers. High-performing
solvers frequently pursue two or more hypotheses, whereas
lower-performing solvers most often pursue just one. Red cir-
cles show the distribution of individual solvers.

5.2 Problem-Solving Patterns and
Solver Performance

To understand how the patterns we identify relate to skillful problem-
solving in an open-ended domain like Foldit, we compare their use
among high-performing solvers to that among lower-performing
solvers. Specifically, we analyze the occurrence of these patterns in
the 15 best-scoring solutions from each puzzle and compare that to
the occurrence in solutions from each puzzle ranked from 36th to
50th. Though it varies somewhat between puzzles, in general the
solutions ranked 36th to 50th represent a middle ground in terms
of quality. They fall outside the puzzle’s state-of-the-art solutions,
but remain well above the least successful efforts. Throughout these
comparisons we use non-parametric Mann-Whitney U tests with
α = 0.008 confidence (Bonferroni correction for six comparisons,
α = 0.05/6), as our data is not normally distributed. For each test,
we report the test statistic U , the two-tailed significance p, and the
rank-biserial correlation measure of effect size r. In addition, since
some of the metrics we compute may not apply to all solution trees
(e.g., the tree contains no branches where the inquisitive pattern
can be evaluated), we report the number of solvers involved in the
comparison n for each test (the full sample is n = 330).

We find high-performing solvers explore more broadly than lower-
performing solvers. For the multiple hypotheses pattern, high-
performing solvers pursued significantly more hypotheses than
lower-performing solvers (U = 10569, p = 0.000014, r = 0.217,
n = 330) (see Figure 7). For the inquisitive pattern, we compute
the proportion of each solver’s exploration that matches the pattern
(i.e., of all the branches in a solver’s solution tree, in what frac-
tion of them did the solver explore more than one child) and find
high-performing solvers explore inquisitively more often than lower-
performing solvers (U = 9343, p = 0.000295, r = 0.231, n = 313)

Figure 8: The proportion of all the branches in a solver’s so-
lution tree in which the solver explored more than one child
for high- and lower-performing solvers. Red circles show the
distribution of individual solvers.

(see Figure 8).

We also find high-performing solvers work harder to avoid local
optima. For the optima escape pattern, we compute the num-
ber of times this behavior occurs in each solution and find that
high-performing solvers engage in this behavior more than lower-
performing solvers (U = 11183.5, p= 0.00185, r = 0.173, n= 330)
(see Figure 9). For the greedy pattern, we compute the propor-
tion of each solver’s exploration that matches the pattern (i.e., of
all the branches in a solver’s solution tree, in what fraction of
them did the solver only explore the best-scoring child). While
high-performing solvers engaged in greedy optimization less often
than lower-performing solvers, the difference was not significant
(U = 9079, p = 0.0158, r =−0.163, n = 295) (see Figure 10).

Finally, we find no significant difference between high- and lower-
performing solvers in the frequency they manually explore and
employ recipes. For the manual pattern, we compute the number of
manual exploration sections in each solution and find no significant
difference between high- and lower-performing solvers (U = 13334,
p = 0.789, r = 0.014, n = 330). For the repeated recipe pattern,
we computed the median frequency of recipe use along all paths
in the solution (i.e., for each path from the root to a leaf, in what
fraction of the nodes did the solver trigger at least one recipe) and
though lower-performing solvers used recipes more frequently, the
difference between high- and lower-performing solvers was not
significant (U = 11342, p = 0.0140, r =−0.157, n = 329).

6. DISCUSSION
The results from our analysis of our solution tree visualizations illu-
minate some key problem-solving patterns exhibited by individual
Foldit solvers. Namely, how broadly an individual explores, both
on a macro- and micro-scale, how actively an individual avoids

Proceedings of the 10th International Conference on Educational Data Mining 37



Figure 9: The number of times in each solution a solver en-
gages in optima escape behavior for high- and lower-performing
solvers. Red circles show the distribution of individual solvers.

local optima by engaging in less greedy optimization and actively
pursuing locally suboptimal lines of inquiry, and how an individual
manages the interplay between automation and manual intervention.

Comparing high- and lower-performing solvers in their applica-
tion of these patterns suggests that skillful problem-solving in an
open-end domain like Foldit involves broader exploration and more
conscious avoidance of local minima. This finding that a key feature
of high-skill solving behaviors is not being enamored by the current
best solution and possessing strategies for avoiding myopic thinking
had implications for the strategies that should be taught to develop
successful problem solvers. Further work is required on other large
open-ended domains to confirm this trend.

The finding that solvers of different skill use greedy exploration,
manual exploration, and automation in similar amounts suggests
skillful deployment of non-greedy exploration, automation, and
manual intervention takes place at a more fine-grained level than
overall quantity. Though this work focuses on the presence or
absence of specific solving behavior, the timing and sequencing of
strategic moves are likely to be critical to success. Further work is
needed to investigate what differentiates effective and ineffective
use of specific solving strategies.

The Foldit dataset itself presented significant challenges for our
analysis, and we addressed these through an iterative visualization-
based methodology. This process served as a design method for
generating a visual grammar to describe a complex problem-solving
process. We do not study the generalization of this approach to
other datasets and domains in this work, but the prerequisites for
its application to other open-ended problem-solving domains can
be concisely enumerated: (1) the logs of solver activity establish
clear temporal relationships between solution states such that those
states can be visualized as a progression through the solution space,

Figure 10: The proportion of all the branches in a solver’s so-
lution tree in which the solver explored only the best-scoring
child for high- and lower-performing solvers. The fact that the
median for both categories of solver is above 0.5 indicates that
this pattern in an important part of refining solutions in Foldit.
Red circles show the distribution of individual solvers.

(2) the solution state or associated metadata is amenable to visual
encoding, so that the visualized progressions can represent fine-
grained details of the solving process, and (3) deep problem-solving
domain expertise is available to provide the necessary context for
interpreting and summarizing the visualized structures.

Our chosen subset of Foldit data represents only a small fraction
of the total available data. In particular, we limited our analysis
to a sample of similar prediction puzzles, and compared specific
ranges of high- and lower-performing solvers. Though these choices
are well-motivated, it is an important question for future work as
to whether our results hold across different datasets and groups of
comparison. More broadly, Foldit supports numerous variations
on the prediction and design puzzle archetypes, which offers an
exciting opportunity to study problem solving across a number of
related contexts with varying goals, constraints, inputs, and tools.

7. CONCLUSION
Gaining a better understanding of key patterns in problem-solving
behavior in complex, open-ended environments is important for de-
ploying this kind of activity in an educational setting at scale. In this
work, we identified six key patterns in problem-solving behavior
among solvers of Foldit. The protein folding challenges in Foldit
present rich, completely open, heterogeneous solution spaces, mak-
ing them a compelling domain in which to analyze these patterns.
To facilitate the identification of these patterns, we used an iterative
methodology to design visualizations of solvers’ problem-solving
activity as solution trees. The size and complexity of the Foldit data
required us to develop domain-specific techniques to summarize the
solution trees and render them tractable for analysis while preserv-
ing the salient problem-solving behaviors. Finally, we compared the
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occurrence of the patterns we identified between high- and lower-
performing solvers. We found that high-performing solvers explore
more broadly and more aggressively avoid local optima. We also
found that both categories of solvers employ automation and manual
intervention in similar quantities, inviting future work to study how
these tools are used at a more fine-grained level.

We have only scratched the surface in our analysis of a subset of
Foldit data. Two integral aspects of the Foldit environment are
not within the scope of this work: collaboration and expert feed-
back. We only considered solutions produced by individual solvers,
but Foldit solver can also take solutions produced by others and
try and improve them. This collaborative framework may involve
specialization and unique solving strategies, and deserves careful
study. Expert feedback comes into play for design puzzles, where
biochemists will select a small number of the solutions to try and
synthesize in the lab. Experts will also impose additional constraints
on future design puzzles to try and guide solutions toward more
promising designs. The interaction of these channels for expert
feedback and problem-solving behavior is an important topic for
future research. Also outside the scope of this work is how individ-
ual solvers change their problem-solving behavior over time. Many
solvers have been participating in the Foldit community for many
years, and studying how their behavior evolves could yield insights
into the acquisition of high-level problem-solving skills.

Looking more broadly at the impact of this work, our methodology
and analysis can serve as a first step toward discovering the scaffold-
ing necessary to develop high-level problem-solving skills. These
results could contribute to a hint generation system, where solvers
could be guided toward known effective strategies, or a meta-planner
component in Foldit that could tailor the parameters of particular
puzzles to optimize the quality of the scientific results. In all of
these cases, this work contributes to the necessary foundational
understanding of the problem-solving behavior involved.
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