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Countless human pursuits depend upon collaborative problem solving, especially in complex, open-ended
domains. As part of the growing technological support for such collaboration, an opportunity exists to design
systems that actively guide and facilitate collaborative problem solving toward the most productive outcomes.
A better understanding of the dynamics of open-ended collaboration on complex problems is needed to realize
this opportunity. Motivated by this need for better understanding, we investigate the collaborative problem
solving ecosystem of the scientific-discovery game Foldit. Our investigation is guided by two primary questions:
how do the social aspects of Foldit impact an individual’s behavior? and what factors have significant impact
on group success? We find that collaboration and competition are associated with increased participation and
that collaboration increases individual performance. We also find that measures of group skill, individual skill,
and participation correlate with better group performance.
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1 INTRODUCTION

Collaborative problem solving is an integral part of many important tasks, from scientific discov-
ery [34] to management [11]. The increasing prevalence of technologically-mediated collaboration
provides an unprecedented opportunity to expand the scale, speed, and sophistication of collabora-
tion on difficult problems. Progress in this direction could take many forms. Expanded scale and
sophistication could arise from optimizing the design of collaborative mechanisms, such as how
solvers are engaged in the problem or how problems are posed, and collaborative structures, such
as how work is divided and shared. Creating layers of machine intelligence to schedule group work
and dynamically adapt environmental parameters such as team size could achieve increased speed
and solution quality, as has been applied to task routing in Wikipedia [5].

This opportunity is especially promising in creative, open-ended domains where good solutions
are not known. It is not clear if existing models of collaboration (e.g., [1, 14]) apply to these complex
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spaces at scale. Hence, a deep understanding of the entire collaborative problem-solving ecosystem
in open-ended domains is crucial if new systems are to meet their potential. This understanding
must contend with both individuals and groups, and account for instances of both success and
failure.

We contribute to the development of this understanding by investigating open-ended collabora-
tive problem solving in the scientific-discovery game Foldit. By modeling the functions of proteins,
the workhorses of living cells, Foldit challenges its users to resolve the shape of proteins as a 3D
puzzle. In addition to solving puzzles individually, users can join together in groups, sharing their
own work and building off solutions from other group members. These puzzles are completely
open and often under-specified, sharing many of the properties Jonassen attributes to design prob-
lems [15]. Foldit puzzles provide a vague goal with few constraints (i.e., find a good configuration of
the protein), answers that are neither right or wrong, only better or worse, and limited feedback (i.e.,
real-time feedback is limited to a single numerical score corresponding to the protein’s current
energy state, and solvers must frequently progress through many low-scoring configurations to
reach a good solution).

Developing users from novices to experts capable of overcoming these difficulties and solving pro-
tein structures currently unsolved by scientists is central to Foldit’s scientific-discovery community.
Solutions generated by Foldit users have led to three results published in the journal Nature [4, 9, 17].
The ill-structured nature of the problems it poses and its objective of state-of-the-art biochemistry
results make Foldit a highly suitable setting in which to study collaboration on real-world problems.

The structure of the collaboration itself also incorporates meaningful aspects of real-world
settings. Collaboration in Foldit is flexible and endogenous. Users control how and when they
collaborate, where they focus their efforts, and even whether they participate in collaboration
at all. Groups are user-driven and their organization is ad-hoc rather than imposed top-down.
This collaboration also occurs at multiple scales and across multiple channels. Users collaborate
on individual puzzles, but may also remain an active member of a single group for years. Foldit
facilitates direct sharing of solutions, but users also collaborate via text chat, screenshots, forums,
and shared macro scripts called recipes.

In this work, our analysis is guided by two primary questions: (1) how do the social aspects
of Foldit impact an individual’s behavior? and (2) what factors have significant impact on group
success? The first question motivates our investigation of the effects of early collaboration and
early competitive success on a user’s continued participation in Foldit and the impact joining a
group has on individual performance. We find that early collaboration and competitive success
are each associated with increased participation, and that joining a group leads to increased
individual performance. In service of the second question, we explore how features of group
activity at difference scales correlate with group performance. We find that features measuring group
collaborative skill and individual group member skill correlate strongly with group performance,
that participation has moderate correlation with performance, and that group and individual
experience only correlate weakly with group performance.

2 RELATED WORK

Citizen science environments like Foldit have long been a fertile subject for study [13]. As these
efforts have moved online, their contributions have spanned many fields including biology [29],
environmental studies [18], and astronomy [22]. In their typology of citizen science, Wiggins and
Crowston identify virtual projects as an important emerging type with high capacity for motivating
continued participation in scientific research [32]. This, along with the scale at which virtual
citizen science efforts can operate, has made them useful settings for researchers interested in
understanding the dynamics of these collaborative spaces. For example, Rotman et al. studied the
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motivations that led both scientists and volunteers to engage in collaborative projects together [25].
They highlight the importance of feedback mechanisms in sustaining participation, such as the
timing of motivational probes and the availability of information about how the data generated by
the volunteers will be used. Though Foldit is the source of data for our analyses, our work does not
focus on the dynamics of citizen science per se. Instead, the properties of the Foldit environment
make highly suitable for studying a complex collaborative problem-solving ecosystem, and we are
motivated by questions applicable to many real-world collaborative problem-solving settings.

As befits a task of such ubiquitous importance, collaborative problem solving has been long
studied in a variety of ways. It has received particular attention for its role in learning, and numerous
studies have shown how it can benefit learning [31]. Researchers have also conducted fine-grained,
in-person, small-scale studies to explore the specific mechanisms at work [24]. More recently, the
learning benefits of collaboration have been shown to extend to computer-mediated settings as
well [26]. Our finding that group membership improves individual performance is consistent with
this existing body of work. We show the benefits of collaboration extend to solving open-ended
problems in an environment with user-driven ad hoc collaboration. Our result raises important
questions about the mechanisms behind the observed benefits.

In addition to the educational lens, collaborative problem solving has been studied in terms of its
efficacy for generating solutions. Early work found that group decision-making could exacerbate
individual biases and that group discussion was plagued by inefficiency [16]. Other work, such as
that by Stasser and Titus [28], highlights the way carefully structure group interactions can alleviate
this friction. As prior results have demonstrated the ability of Foldit solvers to resolve previously
unanswered scientific problems, we focus on understanding what contributes to success on Foldit
puzzles, rather than on evaluating the efficacy of Foldit itself. Some work, such as Settles and
Dow’s study of online songwriting collaboration [27], has investigated the factors contributing to
successful ad-hoc collaboration in an online setting, though not in the scientific-discovery domain.

Similar to our work in its subject of study, Tuasczik et al. investigated collaboration on real-world
open-ended problems in MathOverflow, an online environment for solving novel mathematical
problems [30]. The authors identified a set of collaborative acts users displayed and used regression
models to assess their impact on solution quality. Cranshaw and Kittur use a combination of data
analysis and visualization similar to our approach in this work to study the principles behind the
success of the Polymath Project [7]. Our analysis focuses on the factors affecting the performance of
groups and individuals rather than the identification and impact of specific actions or the principles
that have led to the success of Foldit. Finally, collaborative problem solving has been studied in the
context of evaluating systems designed to facilitate novel mechanisms of collaboration. For example,
CoSolve [10] allows users to both pose and solve problems, visually representing the solving process
as state-space search trees, The Climate CoLab [12] combines model-based planning, online debates,
and electronic voting to enable collaborative development of plans to address climate change, and
CrowdForge [21] presents a general framework for crowdsourcing complex tasks such as article
writing.

A related, but distinct line of research deals with quantifying team performance and identifying
the major factors involved. Much of this work has focused on developing frameworks for successful
collaboration (e.g., [1, 14]). These frameworks deal with in-person and relatively small-scale settings,
making analysis like ours a necessary step in developing frameworks that extend to the new
collaborative environments made possible by recent technological advances. Other work leverages
the concept of collective intelligence to explain team performance in domains such as competitive
online games [19], as well as a variety of other tasks [33]. While measuring the collective intelligence
of Foldit teams could certainly yield interesting predictive results, doing so would require soliciting
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the participation of Foldit users in additional data-gathering activities, and is beyond the scope of
this work.

3 FOLDIT

Foldit is a scientific-discovery game that tasks human solvers with manipulating a 3D representation
of a protein into the minimum energy configuration possible. Proteins are posed to solvers as puzzles,
and solutions are evaluated in real-time according to their energy configuration. Foldit crowdsources
protein structures by having solvers compete to produce the highest-scoring solutions.

In addition to generating solutions individually, Foldit solvers can join together in groups to
tackle puzzles collectively. While solvers can communicate via a variety of typical online tools
such as text chat and image sharing, Foldit provides an explicit mechanism for collaboration called
evolving. Whenever a member of a group generates an individual solution (a soloist solution in
Foldit parlance), they can choose to share it with the other members of their group. Those other
members can then import this soloist solution directly into their client, and attempt to modify and
improve it. If a teammate successfully improves on the soloist effort, the new, improved solution is
recorded as an evolver solution. An evolver solution can in turn be evolved just like soloist solutions.
A group’s official solution for a puzzle is the highest scoring solution, soloist or evolver, produced
by any member of that group. Prior work studying group behavior in Foldit has focused on the
sharing of automated macro scripts called recipes [3], though there has been limited discussion of
group solving dynamics [4].

Foldit puzzles fall into two main types: (1) prediction puzzles, the more common type of puzzle, in
which the amino acids that make up the protein are known, but the way the protein folds up in 3D
space is not know, and (2) design puzzles where solvers can modify which amino acids compose the
protein in order to create a protein that fulfills a specific scientific purpose such as targeting key
molecules in diseases. In this work we limit our analysis to prediction puzzles to avoid differences
in puzzle type as a confounding factor.

4 BACKGROUND

The properties that make the Foldit ecosystem an attractive environment for the investigation of
open-ended collaborative problem solving also present significant challenges. First, the variety of
channels over which collaboration can occur means that only a portion of the collaborative activity
is directly observable in the data Foldit makes available. Specifically, we can observe the solutions
shared via the Foldit client itself and through this understand who is contributing to a group effort
and whether their contribution consists of a de novo effort or directly builds on work by another
group member. The forums hosted by the Foldit project and the recipes shared among groups are
also observable, though we do not analyze these channels in this work. We cannot observe the
sharing of ideas or other collaboration happening over other channels such as text chat. Due to this
limited picture, fine-grained analysis of collaborative acts and problem-solving strategies requires
a detailed look at low-level problem-solving behavior in order to infer the larger patterns at work.
Hence, this work looks very broadly, focusing on the aggregate trends and correlations, with the
goal of guiding future, more targeted analysis toward the most salient phenomena in need of deeper
explanation.

A second challenge is the presence of many confounding variables. As Foldit is an active problem-
solving community, randomized controlled trials and other experimentally controlled scenarios are
absent from the data on its solvers’ behavior. Hence, in assessing the impact and importance of
various factors, establishing simple lines of cause and effect is frequently infeasible. We tackle this
challenge in several ways. Throughout our analysis, we employ a combination of data analysis and
visualization to illustrate the relevant trends and pair this with a broad discussion of the potential
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factors at work. This enables us to work toward an understanding of collaborative problem-solving
in Foldit within the limitations imposed by the data. In the case of quantifying the effect of group
membership on individual performance, the problem of confounding variables is particularly acute
and we take the additional measure of carefully constructing a simulated controlled experiment.
We identify a suitable synthetic treatment population (i.e., solvers who joined a group some time
after they began playing Foldit), and pair each member of that population with the most similar
member of the synthetic control population (i.e., solvers who never joined a group) in order to
minimize the possibility that differences between the populations beyond group-joining itself are
responsible for effects we observe.

A third challenge is one fundamental to the nature of Foldit puzzles. The lack of a metric
for solution quality comparable across puzzles makes it difficult to quantify solver and group
success over time. The only absolute metric of solution quality is the score computed from the
protein’s current configuration, but since this metric is contingent on various structural properties
of the protein, there is no reliable baseline to use to compare solutions dealing different proteins.
Interpretation of the best scores, as well as the differences in score among a set of solutions cannot
easily generalize across multiple puzzles. Hence, a relative rather than absolute metric is the natural
choice for tracking success in Foldit over time.

An obvious relative metric, a simple ranking of solutions by score, fails to capture any notion
of puzzle difficulty or the degree to which top-scoring solutions exceed the competition. That is,
if a puzzle is relatively easy, and there are dozens of similarly-scoring solutions, a ranking-based
metric will treat this situation the same way it would treat a puzzle where one or two solutions
dramatically outscore everything else. Since we are interested in quantifying success over time,
we can afford to use a metric that dispenses with fine-grained distinctions within a single puzzle
in favor of a metric that better accounts for difficulty and margin of success. Motivated by these
considerations, in this analysis we use the ratio of a solution’s score to the score of the best solution
as our measure of performance. In other words, the performance of a solver or group on a given
puzzle is measured as the ratio of their score to the best soloist or group solution, respectively.
This metric accounts for the failings of ranking: if all the top solutions have similar scores, they
will all have very similar performance; if one solution significantly exceeds the rest, our metric
for performance will reflect this. We do not claim that this metric is the optimal choice for every
analysis of performance in Foldit, but it is well-suited to the questions we seek to address in this
work.

In working to overcome these challenges, we contribute a metric accounting for puzzle difficulty
and margin of success as well as enabling post-hoc analysis that accounts for several important
factors that were not controlled in the original data. We use these approaches to investigate
individual and group behavior in the complex, open-ended domain of Foldit puzzles. We gain
insight into the effects of collaboration and competition on individual behavior and the factors
involved in group success, and discuss the consequences of these findings for the future design and
augmentation of collaborative problem-solving systems.

5 EFFECTS OF EARLY COLLABORATION AND COMPETITIVE SUCCESS ON
PARTICIPATION

In volunteer-based problem-solving communities such as Foldit’s, keeping solvers engaged is crucial
to the success and longevity of the project. To contribute solutions to complex, open-ended problems,
solvers must develop significant expertise, and thus must participate long enough to accomplish
this. Furthermore, important social mechanisms such as collaboration and competition, both of
which feature prominently in Foldit, require a critical mass of users to function effectively. Hence,
understanding key drivers of long-term participation is important for the design of collaborative
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problem-solving systems. To this end, we assess how interaction with both collaboration and
competition affects participation in Foldit.

5.1 Method

To address this question, we analyzed the data from all Foldit solvers across the 681 prediction
puzzles released since early 2011 (puzzles released before then were not categorized). This dataset
consists of 26,048 solvers who contributed 179,723 solutions. Since a solver’s initial experiences in
Foldit must necessarily play a significant role in their choice of whether to continue participating,
we group the population in our dataset according to the presence of two experiences in each solver’s
first five puzzles.

Specifically, we consider a solver to have experienced early success if in any of their first five
puzzles, their soloist solution ranked in the top 25 soloist solutions. We select the top 25 solutions
as a threshold because that is how many solvers are shown on the first page of ranked soloist
solutions for each puzzle on the Foldit website, and ranking is the primary mechanism for social
recognition in Foldit. In other words, we consider a solver to have experienced early success if they
can see themselves on the first page of ranked soloist solutions for any of their first five puzzles.
We consider a solver to have experienced early collaboration if in any of their first five puzzles, they
participated as a member of a group. Foldit has 3-7 puzzles available for solvers to contribute to at
a time (individual puzzles expire and get replaced on a timeline of 1-2 weeks), so a solver’s first
five puzzles reasonably approximates the content available at the time they begin participating.
These criteria give us the four non-overlapping classes listed in Table 1.

In terms of quantifying participation, the most relevant measure is also the most straightforward:
the number of puzzles a solver contributed to. We compare the number of puzzles contributed to
by solvers in each of the four classes.

5.2 Results

As Figure 1 shows, both early collaboration and early success are associated with increased partici-
pation. Each curve visualizes the rate at which solvers in a given class stop contributing to Foldit.
For example, almost 40% of those who had both early success and early collaboration contributed to
at least 100 puzzles, while only 29% of those with only early success did so. We use a Mann-Whitney
U test for non-normally-distributed data to test significance and rank-biserial correlation coefficient
(r) to measure effect size of the differences between classes (we use multiple Mann-Whitney U tests
instead of a Kruskal-Wallis test in order to understand the magnitude of the effects). Specifically,
we compare each class to the next best class in terms of participation (i.e., the class with early
success and early collaboration is compared to the class with early success only; the class with
early success only is compared to the class with early collaboration only, and so on). Summary
statistics for each class and the results of our statistical comparisons are given in Table 1.

solvers | mean puzzles | median puzzles U effect size r
Early success, collaboration 78 149.5 53 3294.5 0.188*
Early success only 104 94.8 21 30932 0.649™**
Early collaboration only 1697 20.4 2 13621219 0.336™**
No early success, collaboration | 24169 5.1 1 — —

Table 1. The summary statistics for each class and results of statistical comparisons between classes. The
U and r given for each class are the test statistic and effect size, respectively, of a Mann-Whitney U test
comparing that class with the class on the next row (hence why the last row omits these). The p values for
the Mann-Whitney test are indicated by: *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 1. The effects of early collaboration and success on continued participation. For a given number of
puzzles on the x-axis, each curve indicates the proportion of solvers in that class who contributed to at least
that many puzzles. This figure shows an association between increased participation and early success and
early collaboration, with early success having the greater association. It is notable that early collaboration is
associated with increased participation for solvers with and without early success.

5.3 Discussion

While early success was associated with greater participation than early collaboration, it is no-
table that early collaboration is associated with significant increases in participation for solvers
independent of whether they experience early success. These results are consistent with existing
research on participation in online communities, in particular the findings that recognition of user
contributions (e.g., early success) and emphasis of social context (e.g., early collaboration) can
increase participation [23].

It is also worth noting that though solvers with early success contribute to many more puzzles on
average, they still stop contributing at an appreciable rate. In some sense, Foldit is failing to capture
the talent of all its promising new solvers. It may be possible that well-designed and well-timed
feedback could convert more of these solvers to long-term contributors. From this perspective,
early success and collaboration could serve as indicators for identifying users with greater potential
to become long-term contributors, and help guide attention from facilitators or the system itself
toward integrating them into the community.

Though we identify significant differences in participation between groups that experience
early success and collaboration and those that do not, we cannot establish clearly delineated cause
and effect. It is possible that those who early on chose to join a group or put in the work to get
a high score are already disposed to greater participation. Regardless of the dynamics at work,
collaboration and competition can clearly provide experiences or opportunities with potentially
long-term effects on the participation of new members. Designers of collaborative problem-solving
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systems interested in increasing participation should explore ways of both increasing the prevalence
of these experiences and integrating them more tightly into the fabric of their systems.

6 EFFECT OF GROUP MEMBERSHIP ON INDIVIDUAL PERFORMANCE

The literature on learning and collaboration makes clear that collaboration can have significant
learning benefits in both traditional and computer-mediated settings [26, 31]. It is not clear, however,
if this effect extends to open-ended problem-solving domains such as Foldit. In Foldit, as in many
other settings, developing solver skill is essential, and quantifying the role of collaboration in this
process is necessary to construct a comprehensive understanding of the problem-solving ecosystem.
Furthermore, characterizing the impact of group membership on individual performance in detail
could serve as a guide to future analysis of the specific mechanisms at work.

6.1 Method

Given the number of confounding factors surrounding group membership in Foldit, isolating its
effect on individual performance requires a carefully designed comparison. Ideally, we would have
two randomly assigned, otherwise identical subsets of Foldit solvers where the members of one
subset joined a group and members of the other subset did not. Since our data comes from an active
scientific-discovery game rather than a controlled lab setting, such an ideal scenario does not exist.
Hence, we construct two subsets of solvers from the available data in such a way as to control
confounding factors.

In particular, we construct a synthetic control sample that never joins a group and a synthetic
treatment sample that does. To measure the effect of group membership on individual performance,
we compare how the performance of members of each sample develops before and after those in
the synthetic treatment sample joined a group. We construct our two samples as follows. First,
we identify the subset of solvers for the synthetic treatment sample who will support a robust
comparison of their performance before and after they first join a group. Specifically, we select
solvers who began not part of any group, who contributed to more than 30 puzzles and at least 10%
of their total puzzles before they joined a group, and who contributed to at least as many puzzles
after first joining a group as they did before joining any group. These criteria ensure a sufficient
demonstration of each solver’s performance before and after they joined a group. There are 92
solvers that meet our criteria.

In order to ensure the validity of comparisons between the synthetic treatment and control
samples, we control for two potentially confounding variables in constructing the synthetic control
sample. In particular, we construct the synthetic control sample by pairing each solver in the
synthetic treatment sample with a solver that never joined a group minimizing the differences
between each pair of solvers along two dimensions. First, we minimize the difference in median
performance before the synthetic treatment sample solver joined a group, measuring performance
as the ratio of the solver’s solution score to the score of the best soloist solution. Minimizing
performance differences before treatment occurs helps ensure that any differences that emerge
after the treatment can be attributed to the treatment itself. Second, we minimize the difference
in the total number of puzzles each solver contributed to. Here we use overall participation as a
proxy to control for differences in overall engagement. As Figure 2 and Figure 3 show, this process
results in very similar distributions of pre-treatment performance and overall participation for our
synthetic treatment and control samples. Solvers in our synthetic treatment sample are diverse in
terms of when they joined a group, as shown in Figure 4
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Fig. 2. The distribution of median performance for our synthetic treatment (i.e., group-joining) and control
(i.e., non-group-joining) samples before treatment solvers joined a group. Red circles indicate individual
solvers.

6.2 Results

To measure the effect of group membership on individual performance, we compare both the
number of solvers who experienced an improvement in performance and the magnitude of the
improvement in each of our two samples after treatment occurs. To compute the magnitude of
improvement, for each pair of solvers, we measure their median performance over the same number
of puzzles following the treatment as the number they contributed to prior to the treatment. For
example, if a solver in the synthetic treatment sample contributed to 40 puzzles before joining
a group, we measure their median performance and the median performance of the synthetic
control sample solver they were paired with over their first 40 puzzles and then over their next
40 puzzles (i.e., their 41st through 80th puzzles). Then, we compute the difference between each
solvers’ median performance after the point of treatment and their median performance before
treatment.

Comparing the number of solvers who experienced an improvement in performance in each
sample (i.e., the solver had higher median performance after the point of treatment than before),
more solvers improved in the synthetic treatment condition (58) than in the synthetic control
condition (40). Pearson’s y? test indicates this can be attributed to a significant difference between
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Fig. 3. The distribution of total puzzles contributed to for our synthetic treatment (i.e., group-joining) and
control (i.e., non-group-joining) samples. Red circles indicate individual solvers.

the two conditions (y2(1, N = 184) = 6.31,p = 0.012). Using a Mann-Whitney U test for non-
normally-distributed data to test significance and rank-biserial correlation coefficient (r) to measure
effect size, we find that among solvers who experienced improvement, those in the synthetic
treatment sample improve their performance more than those in the control sample, but that
this difference is not statistically significant. The 58 synthetic treatment solvers who improved
have a mean increase in performance of 0.036 (median of 0.025) compared to a mean increase in
performance of 0.023 (median of 0.018) for the 40 synthetic control solvers who improved (U = 906,
p =0.067, r = 0.219).

6.3 Discussion

The finding that collaboration improves individual performance in Foldit is not surprising, but serves
as useful confirmation that this effect extends to ad-hoc collaboration on complex, open-ended
problems in an entirely virtual environment. In particular, improvement was more widespread
among group members than among non-group members. This finding motivates questions for
deeper analysis into what about group membership in Foldit is contributing to the observed benefits.
Any number of dynamics could be at work, including mentorship, exposure to new techniques and
ideas, access to recipes shared with group members, or increased effort due to social motivation.
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Fig. 4. The distribution of how many puzzles solvers in our synthetic treatment sample contributed to before
joining a group. Red circles indicate individual solvers.

Investigating these dynamics is important for developing a comprehensive understanding of
the collaborative problem-solving ecosystem, and could provide useful insights for designers of
collaborative problem-solving systems.

An interesting aspect of these results is that many solvers in both samples had decreased
performance after the point of treatment. This is not surprising as our metric for performance is
relative rather than absolute, meaning if the solver community improves as a whole over time,
overall performance should appear roughly the same. Nevertheless, this lack of improvement raises
the question about what intervention apart from group membership might give these solvers the
kind of boost experienced by the majority of those that joined a group.

Though we have taken steps to minimize the effect of confounding variables on our results, it
is not possible to guarantee their absence. Regardless of any precautions, we are still necessarily
comparing solvers who chose to join a group to those who did not, making our results vulnerable to
selection bias. Due to our method of constructing our samples, however, any confounding factors
that do play a role are not evident in solver performance pre-treatment or in overall participation.
Furthermore, we measure improvement over the same number of puzzles for both conditions, so
we control for increase in engagement associated with joining a group in terms of its effect on
participation. Hence, we have confidence that group membership plays a significant role in the
observed effect.

7 EXPLORATION OF GROUP PERFORMANCE

As in so much of real-world problem solving, group performance is a key driver of high quality
solutions in Foldit. Developing a better understanding of what contributes to group success and
failure could play a vital role in improving outcomes. This understanding is a necessary foundation
for designing systems that structure group work in ways that enable more effective collaboration,
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or implementing layers of machine intelligence to schedule individual efforts in the most effective
combination.

In this section we explore the relationship between group performance and a variety of factors.
While the relationships we explore are correlational rather than explanatory, they provide a lay of
the land, and, more importantly, generate questions that can guide future investigations. A deep
understanding of group performance in Foldit will require fine-grained analysis of collaborative acts
and the specific collaborative problem-solving behavior involved in high-quality solutions. While
this fine-grained approach is beyond the scope of this work, our exploration offers a necessary
foundation for future, more narrow dives into the dynamics behind what we observe.

7.1 Method

To conduct this exploration, we use data on group contributions on all 681 prediction puzzles
released since early 2011. Of the 451 groups that participated in at least one of these puzzles, we
restrict our analysis to the 66 groups that participated in at least five puzzles with at least two
group members participating in each puzzle. These 66 groups contributed 13,471 solutions (the
members of these groups contributed far more solutions than this, but Foldit considers a group’s
solution to be the best soloist or evolver solution contributed by one of its members).

Given our interest in collaborative problem-solving performance, it is natural to exclude those
groups whose data does not demonstrate meaningful opportunity for collaboration. We ignore
both ephemeral, short-lived groups (fewer than five puzzles) and groups clearly not collaborative
in nature (fewer than five puzzles with multiple group members). The choice of five puzzles as a
threshold is motivated by the release schedule of Foldit puzzles. Between three and seven puzzles
are available at any given time, and a puzzle typically expires after 1-2 weeks, and is replaced with
a new puzzle. Thus, a threshold of five puzzles nicely approximates a minimum engagement with
the state of the game at a given point in time.

With this dataset, we explore group performance at both macro- and meso-scale. Specifically,
we explore how features of a group’s overall tenure correlate with overall group performance and
how features of a group’s effort on an individual puzzle correlate with performance on that puzzle.
In both cases we measure performance as the ratio of a group’s solution score to the score of the
best group solution. As part of exploring overall performance, we also examine how these features
differ between high-performing groups and other groups in our dataset. Given that a nuanced
identification of high-performing groups would rely on the kind of deep understanding of group
performance motivating our current exploration, we use a very simple threshold: we designate a
group as high-performing if it contributed the single best solution (i.e., was ranked first) on at least
one puzzle. Under this threshold, 15 of the 66 groups are considered high-performing. We view this
threshold as providing a good upper bound on the number of high-performing groups — it is very
unlikely that any group making a substantive collaborative contribution through Foldit has never
contributed a puzzle’s highest-scoring solution. In the context of an initial exploration, we view a
broad, inclusive threshold as preferable to a narrow, overly-restrictive one.

Macro-scale features. We explore how the following features of a group’s entire solving history
relate to overall group performance. We apply these to the 66 groups in our dataset.

Group experience: the total number of puzzles the group has contributed to. Groups may
improve their collaboration over time, which in turn may increase their performance.

Collaborative skill: the proportion of puzzles for which the group’s solution was contributed
by an evolver. Collaboration in Foldit consists of an ad-hoc back-and-forth as group members
view, borrow from, and improve upon (i.e., evolve) each others’ solutions, so no single feature will
completely capture this complex process. As this feature measures the frequency with which a
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group’s solution definitively represents an effort beyond what any individual member contributed
alone, we hypothesize it approximates part of a group’s overall ability to collaborate productively.

Group participation: the median number of group members participating on each puzzle over
the group’s entire history. Without sufficient participation, groups may be unable to benefit from
collaboration.

Meso-scale features. We explore how the following features of a group’s effort on an individual
puzzle relate to group performance on that puzzle. We apply these to the 13,471 group contributions
in our dataset.

Individual experience: the number of puzzles contributed to by the most experienced partici-
pating group member (only counting puzzles prior to the one in question). Since a group’s solution
is the best among those produced by all its members, we similarly use the most experienced partici-
pating group member as a measure of the experience the group brought to bear on a particular
puzzle.

Individual skill: the median soloist performance of the best-performing participating group
member (across all puzzles that group member has contributed to up until this point). As with
the previous feature, the nature of group solutions in Foldit motivates our considering only the
best-performing participating group member.

Soloist participation: the number of group members contributing as soloists. More soloists may
provide a group with greater diversity of ideas and increased ability to pursue multiple approaches
to a puzzle.

Evolver participation: the number of group members contributing as evolvers. More evolvers
may enable a group to better or more quickly refine its solutions.

7.2 Results

We first describe our exploration of our three macro-scale features. For each feature, we plot the
value of that feature for each group versus that group’s median performance across all puzzles it
contributed to, using color to distinguish top groups from other groups. Group experience is shown
in Figure 5, collaborative skill is shown in Figure 6, and group participation is shown in Figure 7.
In addition, we compute Spearman’s rank correlation coefficient (Spearman’s p) for each feature
to measure its correlation with group performance, doing so separately for top groups and other
groups. Finally, we perform for each feature a Mann-Whitney U test to determine if the difference
between top groups and other groups is statistically significant, and compute the rank-biserial
correlation coefficient r to measure the effect size for this test. We use these statistical measures as
they are non-parametric and thus appropriate for non-normally-distributed data. These values are
given in Table 2.

Top groups Other groups
median | Spearman’s p | median | Spearman’s p | U | effect size r
Group experience 574 0.517* 71 0.212 69 0.820"**
Collaborative skill 0.288 0.743*** 0.000 0.586™** 14 0.963"**
Group participation 6 0.706** 1 0.140 81.5 | 0.787

Table 2. The statistical results of our exploration of macro-scale features are given here. For each feature, we
list the median value and Spearman’s rank correlation coefficient (p) for both top groups and other groups. We
also list the test statistic U and rank-biserial correlation measure of effect size r for a Mann-Whitney U test
of the difference between top groups and other groups. The p values for the correlation and Mann-Whitney
test are indicated by: *p < 0.05, **p < 0.01, ***p < 0.001.
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We find a significant difference between top groups and other groups for all three features.
We also find significant correlation for top groups between those same three features and group
performance, although at differing levels of significance. The collaborative skill feature has the
largest effect size and the strongest correlations, including, unique among our three features, a
significant correlation with group performance among non-top groups.

As with our macro-scale features, for each of our meso-scale features we plot the value of
that feature for each group contribution (i.e., a separate data point for each puzzle each group
participated in) versus the performance of that group on that puzzle. Individual experience is shown
in Figure 8, individual skill is shown in Figure 9, soloist participation is shown in Figure 10, and
evolver participation is shown in Figure 11. In addition, we compute Spearman’s p for each feature
to measure its correlation with group performance. These correlations are given in Table 3.

Spearman’s p
Individual experience 0.405***
Individual skill 0.725***
Soloist participation 0.687***
Evolver participation 0.648"**

Table 3. The statistical results of our exploration of meso-scale features are given here. For each feature, we
list the Spearman’s rank correlation coefficient (p). All correlations are significant for p < 0.001.

We find significant correlation for all four meso-scale features, though the correlation is much
weaker for individual experience than the other features. As with the macro-scale features, the
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measure of skill has the strongest correlation with performance. We note that participation for
both soloists and evolvers appears to have diminishing returns. Using the median performance at
each level of participation as a guide (shown as red hashes in Figures 10 and 11), we observe the
benefits of increased participation diminish at more than six soloists and more than five evolvers.

7.3 Discussion

In our exploration of group performance in Foldit, we analyze the relationship of seven different
features with group performance (three at the overall group level and four at the puzzle level). We
also examine the differences in the former three features between top groups and other groups.
We find that features measuring collaborative skill and individual skill correlate strongly with
group performance, whereas features measuring group and individual experience only correlate
weakly. Features measuring participation correlate moderately with group performance, though
at the macro scale this correlation is only present for top groups. Finally, top groups have more
experience, higher collaborative skill, and higher participation compared to other groups.

The relationship we find between collaborative skill and group performance is consistent with
other work on solution quality in collaborative environments. Studies of collaboration in settings
including MathOverflow [30] and League of Legends [19] find that collaborative acts improve group
performance. In the context of Foldit, this finding highlights a promising focus for future, fine-
grained analysis: investigating the collaborative organization and strategies used by groups when
their best solution is an evolver solution. Understanding these events at the level of solver actions,
including how solutions are shared and refined within a group, will be critical for characterizing
why they are associated with long-term group success.

The relatively weak correlation between experience and group performance is surprising, es-
pecially since experience is often the strongest predictor of performance in a game [19]. One
possible explanation is that the changing Foldit environment in terms of new puzzles and tools
being added lessen the typical benefits of experience. Additional labeling of the puzzles in the Foldit
dataset to better account for these differences would be one way to enable an investigation of this
potential explanation. Another, more troubling explanation is that Foldit solvers are not learning
from experience the way we would expect. Given the known importance of immediate feedback and
reflection for learning [6], the lack of these practices as integral parts of Foldit may be contributing
to reduced solver learning. Fortunately, existing work on improving crowdsourced solutions offer
models of how reflection (in the form of self-assessment [8]) and real-time feedback (in the form
of high-level expert guidance [2]) can be incorporated into online problem-solving environments.
Our exploration suggests there may be an opportunity for these techniques to improve solution
quality in the context of scientific-discovery games.

Participation’s correlation with group performance in Foldit is exciting because participation in
online communities is well-studied in the literature [23]. We observe that median participation is
quite low for many groups, and the puzzle-level correlation of participation with group performance
suggests increased participation could improve solution quality for those groups. A variety of
mechanisms to increase participation have been identified, including sending personalized intro-
ductory messages emphasizing social interaction and explaining to members the value of their
contributions [23]. The diminishing returns to increased participation we observe are consistent
with analysis of collaboration among editors of Wikipedia articles [20]. Kittur and Kraut found that
appropriate coordination techniques were necessary in order to benefit from adding more editors.
A deeper look into the collaboration of Foldit’s top groups is necessary to reveal the coordination
techniques they employ to capitalize on the benefits of higher participation.

Our initial exploration of group performance in Foldit is not without limitations. The thresholds
we use to determine inclusion in the dataset and to differentiate top groups from other groups are

PACM on Human-Computer Interaction, Vol. 1, No. CSCW, Article 22. Publication date: November 2017.



Collaborative Problem Solving in an Open-Ended Scientific Discovery Game 22:19

clearly imperfect. Despite the requirement that every group in our dataset participate in at least
five puzzles with at least two members, many of the groups appear to mostly participate with a
single member (see the large number of groups with a median participation of one in Figure 7 and
zero best solutions from evolvers in Figure 6). As for top groups, there are a handful we label as top
groups that, at least by the features we measure, look a lot more like non-top groups. One result of
our exploration is highlighting this diversity of group composition and behavior in Foldit.

Our exploration is limited by its focus on correlations rather than providing more explanatory or
predictive insight. While building a regression model would be a natural approach to incorporate
our features into a more predictive context, we fear such a model could easily be misleading due to
complex and poorly understood dependencies between the features we study. Further investigation
is needed before any such model can be constructed with confidence.

8 CONCLUSION

Developing a deep understanding of both individual and group success in an open-ended col-
laborative problem-solving environment is necessary for building the next generation of these
environments that will improve outcomes through optimal design and machine intelligence. We
progress toward this understanding by investigating the open-ended collaborative problem-solving
ecosystem of the scientific-discovery game Foldit. Our investigation was motivated by two primary
questions: (1) how do the social aspects of Foldit impact an individual’s behavior? and (2) what fac-
tors have significant impact on group success? In order to carry out this investigation, we overcame
significant challenges posed by the structure and complexity of Foldit data. In particular, we devised
a metric of performance that accounts for puzzle difficulty and margin of success and conducted a
simulated controlled experiment by pairing similar group-joining and non-group-joining to form
synthetic treatment and control samples.

We analyzed the relationship between early collaboration and success and long-term participa-
tion, investigated the effect of group membership on individual performance, and explored how
features of group activity in Foldit relate to group performance. We found that both early collabora-
tion and early success were associated with increased participation. While those with early success
participated more, those with early collaboration participated more than those without regardless
of whether they had early success. We also found that group membership increased individual
performance, though not universally. Finally, we found measures of group collaborative skill and
individual group member skill correlate strongly with group performance, while group and individ-
ual experience only correlate weakly with performance. Participation had moderate correlation
with group performance, with evidence of diminishing returns on additional participation.

We are far from exhausting the opportunity Foldit provides to study collaborative problem
solving at scale on real-world problems. We limited our analysis here to Foldit’s prediction puzzles
to avoid adding puzzle type as another variable, but an analysis of collaboration on design puzzles
would be an exciting extension of our work. Not only do design puzzles offer a different, more
creative objective, but they also incorporate a collaborative channel not present for prediction
puzzles: expert feedback. For a subset of design puzzles, biochemists select a small number of
solutions to try and synthesize in the lab. Experts also institute constraints on future deign puzzles
to guide the solutions toward more promising designs. Other interesting variants of Foldit puzzles
are also omitted from this work. Hand-folding puzzles take place over two rounds where the first
round does not allow collaboration or recipes and solvers can import first-round solutions into the
second round. These puzzles could provide a semi-controlled setting in which to study the effects
of collaboration. All-hands puzzles treat the entire population of Foldit solvers as one big group (i.e.,
a shared soloist solution is shared with everyone). This alternative structure for collaboration could
provide an illuminating contrast to the typical one where solvers are siloed into groups. Finally,
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Foldit does record some data on low-level solver activity that does not feature in our analysis. This
data could be an invaluable resource for digging deeper into the findings presented here.
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