**CS 111 w20 --- Lab 5: Image Manipulation (Pair Programming)** *Due: Wednesday, February 19, at 9pm* In this lab you will apply your knowledge of lists and loops to the task of *image processing*. First, some background. You can think of a digital image as a large two-dimensional array of pixels, each of which has a red (R) value, a green (G) value, and a blue (B) value. An R, G, or B value is just decimal number between 0 and 1. To modify the image, you need to *loop through* all of these pixels, one at a time, and do something to some or all of the pixels. For example, to remove all of the green color from each pixel:
for every row in the image: for every column in the image: set to zero the green value of the pixel in this row and this columnThe files for this lab are contained in [lab5.zip](lab5.zip). Download and unzip it to get started. These files are - `gray.py`: you will modify this file to implement your solution to problem 1 (Grayscale) - `blue_screen.py`: you will modify this file to implement your solution to problem 2 (Blue Screening) - `blur.py`: you will modify this file to implement your solution to problem 3 (Blur) - `beach_portrait.png`: a picture of some backpacking goofball, used as the input image for `gray.py` - `oz_bluescreen.png`: a still photo from the set of the 2013 film *Oz the Great and Powerful*, used as one of the input images for `blue_screen.py` - `meadow.png`: a peaceful meadow scene, used as one of the input images for `blue_screen.py` - `reference-beach_portrait_gray.png`: the expected output image for `gray.py`, provided for your reference - `reference-oz_meadow.png`: the expected output image for `blue_screen.py`, provided for your reference - `reference-oz_meadow_improved.png`: the expected output image for the optional improvement to `blue_screen.py`, provided for your reference - `reference-beach_portrait_blur.png`: the expected output image for `blur.py`, provided for your reference If you look at any of the provided `.py` files, you will see an unfamiliar `import` statement: `import matplotlib.pyplot as plt`. The `matplotlib` module is what we will use to load, manipulate, and save image data for this homework. The code for loading and saving is already included in the starter files, so you don't need to write that yourself. What you do need to know is that the function `plt.imread`, which we use to load image data, returns a 3D `array` representing the pixel values of that image. An `array` is very similar to a regular Python `list`, and you can index and loop over `array`s in the same way. Like we saw in class, the 3D `array` is a list of lists of lists. Thus, the outer list is `[row0, row1, row2, ...]`, each row is `[pixel_in_column0, pixel_in_column1, pixel_in_column2, ...]`, and each pixel is `[red_value, green_value, blue_value]` (RGB values will be between 0 and 1). **You should make sure you understand this structure before starting the lab**. Try adding `print(image)` to `gray.py` and see if the output makes sense to you. Please post your questions on the [Moodle forum](https://moodle.carleton.edu/mod/forum/view.php?id=507509) or bring them to class. If you are working on your own computer, you may need to install `matplotlib` before you can do this homework. Running the command
python3 -m pip install matplotlibshould install it. Come see me if this doesn't work. As usual, completing OPTIONAL CHALLENGE problems will earn you two bonus points, up to the maximum score of 30 for the lab. **Suggested Timeline**: - Complete problem 1 and start problem 2 by Friday - Complete problem 2 and start problem 3 by Monday - **Please read and think about problem 3 (the most difficult problem) before class Feb. 17, so you can ask questions if you're stuck on how to approach it.** --- # Grayscale Modify `gray.py` to convert `image` to a black-and-white or *grayscale* version of the original. In the RGB color model, gray tones are produced when the values of red, green, and blue are all equal. A simple way to do this conversion is to set the red, green, and blue values for each pixel to the average of those values in the original image. That is $R_{gray} = G_{gray} = B_{gray} = \frac{R + G + B}{3}$. When you have implemented a correct solution, running `gray.py` should produce a file called `beach_portrat_gray.png` that is the same image as `reference-beach_portrait_gray.png`: ![](reference-beach_portrait_gray.png width="300px") # Blue Screening Movies--particularly (non-animated) action movies that use a lot of special effects--often use a technique called *blue screening* to generate some scenes. The actors in a scene are filmed as they perform in front of a blue screen and, later, the special-effects crew removes the blue from the scene and replaces it with another background (an ocean, a skyline, the Carleton campus). The same technique is used for television weather reports--the meteorologist is not really gesturing at cold fronts and snow storms, just at a blank screen. (Sometimes *green screening* is used instead; the choice depends on things like the skin tone of the star.) This problem asks you to do something similar. We can *combine* an image of, say, James Franco on the set of *Oz the Great and Powerful* (`oz_bluescreen.png`) with an image of scenery (`meadow.png`) by replacing the bluish pixels in the first picture with pixels from a background picture. To do this, we have to figure out which pixels are bluish (and can be changed) and which ones correspond to the actor and props (and should be left alone). Identifying which pixels are sufficiently blue is tricky. Here’s an approach that works reasonably well here: count any pixel that satisfies the following formula as "blue" for the purposes of blue screening: $B > R + G$. Modify `blue_screen.py` to use this formula to replace the appropriate pixels in `image` with pixels from `background`. When you have implemented a correct solution, running `blue_screen.py` should produce a file called `oz_meadow.png` that is the same image as `reference-oz_meadow.png`. ![](oz_bluescreen.png width="300px" id="img-eq") + ![](meadow.png width="300px") = ![](reference-oz_meadow.png width="800px") ## OPTIONAL CHALLENGE Improved Blue Screening If you look closely at `oz_meadow.png` you will notice a number of small errors (sometimes called *artifacts*). These include bits of blue mixed in with the meadow grasses, a blue outline around the balloon basket, and bits of James Franco replaced with tree pixels. For this optional extension, improve the formula used for determining "blue" pixels such that these errors are avoided. Your solution must produce an image at least as good as `reference-oz_meadow_improved.png`. ![](reference-oz_meadow_improved.png width="800px") # Blur Modify `blur.py` to implement the function `blur(img, radius)`. Your `blur` function should create and return a blurry version of the image (`img`). For each pixel, average all of the pixels within a square `radius` of that pixel. Here's an example what that means: ![](blur-diagram/figure.png) Each pixel will become the average of the square of pixels around it. Pixels at the edges of the image will use whatever part of the square actually exists. Here's an animation of how the square radius moves with each pixel: ![](blur-diagram/blur-diagram.gif) A good way to approach this would be to use `radius` to slice out a square around the pixel in question. For example, `img[0:10, 0:10]` would slice out a 10-by-10 square from the upper left corner of the image (note that unlike `list`s, `array`s let us index rows and columns separated by commas instead of multiple sets of brackets). To get the average of the elements of an `array` you can use `.mean()` (e.g., `img[:, :, 0].mean()` would be the average red value for the entire image because it slices out all rows, all columns, and the first element (red) of each pixel). Make sure to put all of your results in a new image (`img.copy()` will return a copy of `img`), instead of overwriting your original as you go; otherwise, your blurred pixels will cascade on top of each other. Be careful near the borders of the image. Keep in mind that some approaches to this problem will result in much slower performance. Any technique that works will receive most of the credit, but your `blur.py` should run in less than 30 seconds to earn full credit. But do be careful; it’s possible to find solution that take a lot longer! When you have implemented a correct solution, running `blur.py` should produce a file called `beach_portrait_blur.png` that is the same image as `reference-beach_portrait_blur.png`. Make sure the code you submit calls `blur` with a radius of 3 like the starter code. ![](reference-beach_portrait_blur.png width="300px") # OPTIONAL CHALLENGES ## Red-green Colorblind (Deuteranopia) In a file called `red_green.py`, implement a simplistic simulation of what a red–green colorblind (*deuteranopic*) viewer would see when looking at the image. To do so, set both the red and green pixel values to be the average of the original red and green pixel values. That way `[0.5, 0, 0]` and `[0, 0.5, 0]` will both come out as `[0.25, 0.25, 0]`. This file should read in `beach_portrait.png` and produce a new file called `beach_portrait_red_green.png`. ## Dither In a file called `dither.py`, write a function `dither(image)` plus code to test your function. Dithering is a technique used to print a gray picture in a legacy medium (such as a newspaper) where no shades of gray are available. Instead, you need to use individual pixels of black and white to simulate shades of gray. A standard approach to dithering is the *Floyd–Steinberg algorithm*, which works as follows: 1. Loop over all pixels as always, from top to bottom and, within each row, from left to right. 2. For each pixel: if its value is larger than 0.5, then set it to 1.0 (pure white). Otherwise, set it to 0 (pure black). Since this is a grayscale image, the red, green, and blue channels will all be equal. Record the *error*, which represents how much blackness we have added to this pixel, by taking the old value of this pixel minus the new one. Note that the error can be positive or negative, depending on whether you adjusted the color *blackwards* or *whitewards*. 3. Distribute this pixel’s error to adjacent pixels as follows: - Add 7/16 of the error to the pixel immediately to the right (“east”). - Add 3/16 of the error to the pixel immediately diagonally to the bottom left (“southwest”). - Add 5/16 of the error to the pixel immediately below (“south”). - Add 1/16 of the error to the pixel immediately diagonally to the bottom right (“southeast”). Be careful near the edges of the image! If some *error* should be distributed to a pixel that doesn’t exist (e.g., it’s off the edge of the image), you should just ignore that part of the error. Some tips: (1) Dithering should only be done on grayscale images--actually you can dither color images, too, but it’s more complicated--so use `gray.py` to convert an image to gray before you get started. (2) In order for dithering to work, you must make your changes to the same image that you are looping over. Dithering by reading one image and making your changes on a copy will not work correctly, because the *error* never gets a chance to accumulate. In other words, make sure that you make a grayscale copy of the image first, and then do all dithering work (looping, reading, writing, etc.) on the copy itself. # What to Turn In Submit the following files via the [Lab 5 Moodle page](https://moodle.carleton.edu/mod/assign/view.php?id=507498). You **do not** need to submit any `.png` files. - Your modified `gray.py`, `blue_screen.py`, and `blur.py`. If you did the [OPTIONAL Improved Blue Screening](lab5.md.html#optionalchallengeimprovedbluescreening), note that in comments at the top of `blue_screen.py`. - OPTIONAL `red-green.py` and/or `dither.py` for the corresponding [extensions](lab5.md.html#optionalchallenges) - A plain text file called `feedback.txt` with the following information (you get points for answering these questions!): - How many hours you spent outside of class on this homework. - The difficulty of this homework for this point in a 100-level course as: too easy, easy, moderate, challenging, or too hard. - What did you learn on this homework (very briefly)? Rate the educational value relative to the time invested from 1 (low) to 5 (high). # Grading This assignment is graded out of 30 points as follows: - Submitting `feedback.txt` -- 3 points - `gray.py` -- 5 points + Produces correct grayscale image -- 5 points - `blue_screen.py` -- 7 points + Produces correct combined image -- 5 points + Runs in a reasonable amount of time (less than 30s) -- 2 points - `blur.py` -- 10 points + Produces correct blurred image -- 8 points + Runs in a reasonable amount of time (less than 30s) -- 2 points - Style -- 5 points + Blur solution uses a function that takes an image and radius and returns a blurry image -- 1 point + Descriptive variable names -- 1 point + Avoid duplicated or redundant code -- 2 points - If you loop over indexes, do not have an additional variable to also keep track of the index (use the loop variable) - Do not copy-paste nested loops to process each color channel separately (handle them together inside a single set of nested loops) - Do not copy-paste nested loops to handle various situations separately (use `if` statements to handle them together inside a single set of nested loops) + Comments with name, date, and purpose at the top of each `.py` file you submit -- 1 point --- Acknowledgments: This assignment description is modified from previous ones written by David Liben-Nowell.